• Title/Summary/Keyword: titanium foam

Search Result 14, Processing Time 0.03 seconds

A Study on Pore Structure and Mechanical Properties of Porous Titanium Fabricated by Three-dimensional Layer Manufacturing Process (3차원적층조형법으로 제조된 타이타늄 금속 다공체의 기공구조 및 기계적 특성에 관한 연구)

  • Son, Byoung-hwi;Hong, Jae-geun;Hyun, Yong-taek;Bae, Seok-choun;Kim, Seung-eon
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.2
    • /
    • pp.100-106
    • /
    • 2012
  • This study was performed to fabricate porous titanium foam by three-dimensional layer manufacturing process, and to evaluate the porosities, compressive stress, Young's modulus and fracture pattern. Porous titanium foam was made of CP(Commercial Pure) titanium powder (${\leq}5{\mu}m$). Total porosities of titanium foam were in the range of 55-68%. Pore size distribution was $200-440{\mu}m$ for coarse pores, $50-100{\mu}m$ for intermediate pores and $5-10{\mu}m$ for fine pores. Compression elastic modulus and compression stress were decreased with increasing porosity. Young's modulus ranged from 1.04-5.62 GPa and maximum stress ranged from 20-241 MPa. Regarding the mechanical properties, 3D(Three Demensional) porous titanium fabricated layer manufacturing is a promising material for human bone replacement.

Evaluation of the Removal Performance of Nitrogen Oxides of Foam Composites Using Activated Carbon and Titanium Dioxide (활성탄소와 이산화 타이타늄을 활용한 폼 복합체의 질소산화물의 제거 성능 평가)

  • Choi, Hyun-Chul;Choi, Young-Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.120-127
    • /
    • 2022
  • Nitrogen oxide(NOx) is a major cause of air pollution, exists in the form of nitrogen monoxide and nitrogen dioxide, and is harmful to the human body. Recently, a number of studies to reduce NOx in the atmosphere have been conducted, and these efforts have been the same in the field of construction materials. It is known that NOx can be efficiently removed by using a photocatalytic reaction. In this study, the NOx removal performance of the foam composite using activated carbon(AC) and titanium dioxide(TiO2) was investigated. AC was used to enhance the photocatalytic reaction of TiO2 by increasing the internal specific surface area of the foam composite. In this study, foam composites were prepared using the substitution rate of AC as the main variable. The NOx removal performance of specimen was evaluated according to the test method presented in ISO-22197-1. The specific surface area of the foam composite showed a tendency to increase according to the AC content, but decreased at 15% or more. Also, when the AC substitution rate was 15%, the NOx removal efficiency was the highest.

Characteristics of Porous Titanium Fabricated by Space-holder Method using NaCl (NaCl을 Space holder로 이용한 타이타늄 다공체의 특성)

  • Son, Byoung-Hwi;Hong, Jae-Geun;Hyun, Yong-Taek;Kim, Seung-Eon;Bae, Seok-Choun
    • Journal of Powder Materials
    • /
    • v.18 no.6
    • /
    • pp.488-495
    • /
    • 2011
  • This study was performed to fabricate the porous titanium foam by space holder method using NaCl powder, and to evaluate the effect of NaCl volume fractions (33.3~66.6 vol.%) on the porosities, compressive strength, Young's modulus and permeability. For controlling pore size, CP titanium and NaCl particles were sieved to different size range of 70~150 ${\mu}m$ and 300~425 ${\mu}m$ respectively. NaCl of green Ti compact was removed in water followed by sintered at $1200^{\circ}C$ for 2 hours. Total porosities of titanium foam were in the range of 38-70%. Pore shape was a regular hexahedron similar that of NaCl shape. Porous Ti body showed that Young's modulus and compressive strength were in the range of 0.6-6 GPa and 8-127 MPa respectively. It showed that pore size and mechanical properties of Ti foams was controllable by NaCl size and volume fractions.

A study on Titanium Hydride Formation of Used Titanium Aircraft Scrap for Metal Foaming Agents

  • Hur, Bo-Yong;Ahn, Duck-Kyu;Kim, Sang-Youl;Jeon, Sung-Hwan;Park, Su-Han;Ahn, Hyo-Jun;Park, Chan-Ho;Yoon, Ik-Sub
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.209-212
    • /
    • 2001
  • Aircraft industry is developed very fast so titanium scrap was generated to manufacture. Titanium scrap was wasted and used to deoxidize cast iron so we are study recycling of it. In this research were studied that metal hydride of reacted in hydrogen chamber of AMS4900, 4901, return scrap titanium alloy and sponge titanium granule. The temperature of hydrogenation was 40$0^{\circ}C$ in the case of pure sponge titanium but return scrap titanium alloy were step reaction temperature at 40$0^{\circ}C$ and 50$0^{\circ}C$, and after the hydride of titanium alloy were crushed by ball mill for 5h. Titanium hydride contains to 4wt.% of hydrogen theoretically as theory. It was determined by heating and cooling curve in reaction chamber. The result of XRD was titanium hydride peak only that it was similar to pure titanium. Titanium hydride Powder particle size was about 45${\mu}{\textrm}{m}$, and recovery ratio was 95w% compared with scrap weight for a aluminum foam agent.

  • PDF

A Morphological Study on the Titanium-Oxide Foams Processed Using Freeze-Casting (동결 주조법으로 제조된 티타늄 옥사이드 폼의 구조 연구)

  • Yoon, Hyunjung;Choe, Heeman;Choi, Hyelim
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.5
    • /
    • pp.427-431
    • /
    • 2012
  • The $TiO_2$ foam synthesized using freeze-casting is a promising photocatalyst and photovoltaic electrode for a variety of energy applications, because the freeze-casting technique is easy to use, cheap, and suitable for mass-production. Despite its several advantages, little scientific information is available on the processing and morphology of the $TiO_2$ foams processed by freeze-casting. In particular, no systematic study has been performed on the microstructural evolution and morphological change of the rutile-phase $TiO_2$ foams during sintering. Therefore, in the present study, several $TiO_2$ foam samples were produced using the freeze-casting technique, which were then sintered at a relatively high temperature of $1200^{\circ}C$ for 1, 2, and 4 h to compare the morphological changes in the microstructure and to understand the effects of processing parameters of the rutile-phase $TiO_2$ foams. The foam ligament size increased near linearly with increasing sintering time whereas the average pore size decreased only slightly with increasing sintering time, with changes in particle morphology from sphere to rod and complete phase transformation from anatase to rutile.

Control of Cell Morphology of Al Foams fabricated by P/M Method and Induction Heating (P/M법과 유도가열법을 이용한 A1 Foam 재료의 기공제어)

  • Youn S. W.;Lee S. H.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.289-292
    • /
    • 2001
  • Aluminium foams, having a closed cell structure, fabricated by applying the powder compact method and an induction heating were studied. The powdered A6061 mixed with the powdered titanium hydride as a foaming agent was hot pressed into a foamable precursor. The resulting precursor was foamed by induction heating up to desired temperature. The effects of the titanium hydride content ($0.3{\~}1.5 wt.\%$), pressing pressure of the foamable precursor material (50-150kN), the forming temperature ($610{\~}690^{\circ}C$) and heating rate during foaming on the expansion behavior of the foam were investigated.

  • PDF

Evaluation of Mechanical Properties of Highly Porous Titanium Considering its Application as a Biomaterial

  • Schiefer, Herwig;Bram, Martin;Buchkremer, Hans Peter;Stover, Detlev
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.309-310
    • /
    • 2006
  • Porous titanium implants can be produced by powder metallurgy in combination with suitable space holder materials. Various mechanical experiments were done to characterize this material regarding the influence of the processing parameters on microstructure and mechanical properties taking into account the properties of the human bone. In this paper, the anistropic behaviour of uniaxially compacted samples was analysed in compression tests and compared to the behaviour of isostatically pressed samples. The failure of the struts of the porous titanium and the crack- initiation and -growth was examined by in-situ SEM analysis.

  • PDF

The Study on Fabrication and Sound Absorption Properties of Al-Zn-Mg-Cu Alloy Foams (Al-Zn-Mg-Cu 발포합금 제조 및 흡음특성에 관한 연구)

  • Jeong, Seung-Reung;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.31 no.3
    • /
    • pp.145-151
    • /
    • 2011
  • Metallic foam has been known as a functional material which can be used for absorption properties of energy and sound. The unique characteristics of Al foam of mechanical, acoustic, thermal properties depend on density, cell size distribution and cell size, and these characteristics expected to apply industry field. Al-Zn-Mg-Cu alloy foams was fabricated by following process; firstly melting the Al alloy, thickening process of addition of Ca granule to increased of viscosity, foaming process of addition of titanium hydride powder to make the pores, holding in the furnace to form of cooling down to the room temperature. Metal foams with various porosity level were manufactured by change the foaming temperature. Compressive strength of the Al alloy foams was 2 times higher at 88% porosity and 1.2 times higher at 92% porosity than pure Al foams. It's sound and vibration absorption coefficient were higher than pure Al foams and with increasing porosity.

Antifungal Properties of Self-actuated Photocatalyst Coated PU Foam (자기구동형 광촉매 코팅에 의한 PU발포체의 항곰팡이 특성)

  • Choi, Sei Young
    • Elastomers and Composites
    • /
    • v.49 no.4
    • /
    • pp.341-345
    • /
    • 2014
  • In this study, self-actuated photocatalyst that titanium dioxide doped by more than two transition metal was coated PU foam. The antibacterial and antifungal activity of self-actuated photocatalyst coated PU foam was characterized without light. The antibacterial property of self-actuated photocatalyst coated PU foam was shown to be reduced more than 96%, and the antifungal property was shown to be reduced more than 99.9%. The durability of self-actuated photocatalyst coated PU foam tested by Weather-O-meter showed the 7% reduction of formaldehyde decomposition from 96.5% before test to 89.8% after test. The observation of surface of PU foam coated with self-actuated photocatalyst showed that the catalyst was firmly attached to the surface of polyester fiber without separation.