• 제목/요약/키워드: titanate

검색결과 572건 처리시간 0.032초

Titanate Nanotube Formation and Nanostructure Development from the Reaction of TiO2 Nanopowder and Alkalihydroxide (TiO2 나노분말과 수산화알칼리와의 반응으로부터 티탄산 나노튜브의 형성과 나노구조의 전개)

  • Jin, Eun-Ju;Riu, Doh-Hyung;Huh, Seung-Hun;Kim, Chang-Yeoul;Hwang, Hae-Jin
    • Journal of Powder Materials
    • /
    • 제15권2호
    • /
    • pp.125-135
    • /
    • 2008
  • [ $TiO_2$ ] nanotubes for photocatalytic application have been synthesized by hydrothermal method. $TiO_2$ nanotubes are formed by washing process after reaction in alkalic solution. Nanotubes with different morphology have been fabricated by changing NaOH concentration, temperature and time. $TiO_2$ nanoparticles were treated inside NaOH aqueous solution in a Teflon vessel at $110^{\circ}C$ for 20 h, after which they were washed with HCl aqueous solution and deionized water. Nanotube with the most perfect morphology was formed from 0.1 N HCl washing treatment. $TiO_2$ nanotube was also obtained when the precursor was washed with other washing solutions such as $NH_4OH$, NaCl, $K_2SO_4$, and $Na_2SO_3$. Therefore, it was suggested that $Na^+$ ion combined inside the precursor compound slowly comes out from the structure, leaving nanosheet morphology of $TiO_2$ compounds, which in turn become the nanotube in the presence of hydroxyl ion. To stabilize the sheet morphology, the different type of washing treatment solution might be considered such as amine class compounds.

Adsorption characteristics of strontium onto K2Ti4O9 and PP-g-AA nonwoven fabric

  • Lee, Tae hun;Na, Choon-Ki;Park, Hyunju
    • Environmental Engineering Research
    • /
    • 제23권3호
    • /
    • pp.330-338
    • /
    • 2018
  • This study investigated the possibility of using potassium titanate oxide ($K_2Ti_4O_9$) and acrylic acid-grafted polypropylene fabric (PP-g-AA) as adsorbents capable of removing strontium from aqueous solutions. $K_2Ti_4O_9$ showed the highest rate of strontium removal in the weak alkaline range, while the PP-g-AA increased strontium removal in the neutral range. Moreover, the adsorption capacity of the $K_2Ti_4O_9$ was not affected by the coexistence of K and Na ions, while the adsorption capacity decreased when Ca and Mg ions were present at the same concentration as that of strontium. When coexisted at the same concentration as strontium, Na, K, Ca, and Mg ions strongly reduced the adsorption capacity of the PP-g-AA. The results also indicated that the adsorption of strontium on $K_2Ti_4O_9$ was consistent with both the Langmuir and Freundlich adsorption isotherms. In contrast, the adsorption of strontium on the PP-g-AA was more consistent with the Langmuir isotherm model. Moreover, the adsorption equilibrium time of $K_2Ti_4O_9$ was generally 12 h, while that of the PP-g-AA was 5 h, indicating that the adsorption rates were consistent with the pseudo-second order kinetics model. $K_2Ti_4O_9$ and the PP-g-AA could be regenerated by simple washing with 0.5 N HCl.

Preparation and Characterization of BaTiO3 Powders and Thin films (티탄산바륨 분말과 박막의 제조 및 특성 연구)

  • Jung, Miewon;Son, Hyunjin;Lee, Jiyun;Kim, Hyunjung
    • Analytical Science and Technology
    • /
    • 제17권2호
    • /
    • pp.173-179
    • /
    • 2004
  • The $BaTiO_3$ powders and thin films were prepared by an alkoxide modified sol-gel process (polymerization-complex route) using ethylene glycol. The stable starting (Ba-Ti)-mixed metal organic sol was made by addition of acetylacetone. The $BaTiO_3$ powders, which had a particle size of 40~77 nm, were crystallized from an amorphous to a tetragonal phase on annealing at 700 and $1100^{\circ}C$ for 1 h. From FT-IR, solid-state $^{13}C$ CP/MAS NMR spectroscopy and X-ray diffractometry, the trace of the Ba-Ti-oxycarbonate phase first appeared at $400^{\circ}C$. Hydrolyzed sol was spin coated on a quartz wafer at 3500 rpm for 60 s and pyrolyzed at $1100^{\circ}C$ for 1 h. After heat treatment, the coated layer became dense and smooth.

Microstructure properties with variation of doped amount $Pr_{2}O_{3}$ of BSCT ceramics ($Pr_{2}O_{3}$ 첨가량에 따른 BSCT 세라믹의 미세구조 특성)

  • Noh, Hyun-Ji;Lee, Sung-Gap;Park, Sang-Man;Yun, Sang-Eun;Kim, Ji-Eun;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1283-1284
    • /
    • 2007
  • The barium strontium calcium titanate((Ba,Sr,Ca)$TiO_3$) powders prepared by the sol-gel method and $MnCO_3$ as acceptor were mixed oxide method. The microstructure was investigated with variation of $Pr_{2}O_{3}$ amount. The BSCT powder and $Pr_{2}O_{3}$ were mixed with organic vehicle(Ferro. B75001). BSCT thick films were fabricated by the screen-printing method on alumina substrates. The bottom electrode was Pt and upper electrode was Ag, respectively. All BSCT thick films were sintered at $1420^{\circ}C$, for 2h. The result of the differential thermal analysis(DTA), exothermic peak at around $654^{\circ}C$ due to the formation of the polycrystalline perovskite phase. In the X-ray diffraction(XRD) patterns, all BSCT thick films showed the typical perovskite polycrystalline structure and no pyrochlore phase was dbserved. The microstructure investigated by scanning electron microscope(SEM). Pore and grain size of BSCT thick films were decreased with increasing amount of $Pr_{2}O_{3}$ dopant. And the average grain size and thickness of BSCT thick films doped with 0.1 mol% $Pr_{2}O_{3}$ was $3.09{\mu}m$, $60{\mu}m$, respectively. The relative dielectric constant decreased and dielectric loss decreased with increasing amount of $Pr_{2}O_{3}$ dopant, the values of the BSCT thick films no doped with $Pr_{2}O_{3}$ were 7443 and 4 % at 1 kHz, respectively.

  • PDF

Characterization of Hydrogen Uptake Properties for Titanate Nanotubes (티타네이트 나노튜브의 수소저장 특성 평가)

  • Lee, Nam-Hee;Oh, Hyo-Jin;Yoon, Cho-Rong;Guo, Yupeng;Park, Kyeong-Soon;Kim, Sun-Jae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.42-42
    • /
    • 2007
  • 티타네이트 나노튜브는 10 nm 이내의 내경과 0.74nm 정도의 크기를 갖는 층상 구조를 이루고 있어 높은 비표면적을 이용한 수소의 물리적 흡착뿐만 아니라 Ti-H 결합에 의한 화학적 흡착이 동시에 가능하다. 따라서 본 연구에서는 전이금속 원소 중 Ni을 첨가한 티타네이트 나노튜브를 합성하고 수소저장특성을 평가하고자 하였다. 티타네이트 나노튜브는 저온균일침전법으로 제조된 침상형의 $TiO_2$ 분말을 출발원료로 염화니켈을 $TiO_2$의 질량 비로 1~5wt% 첨가하고 10 M의 NaOH 수용액에서 일정시간 혼합한 후 $150^{\circ}C$에서 24시간 수열합성하였다. 합성된 분말의 입자형상 및 결정상은 전자현미경과 X-선 회절 시험을 이용하여 분석하였고, 입자의 비표면적은 액체질소흡착법을 이용하여 측정하였다. 전자현미경 관찰결과 이온교환 전후의 입자형상은 큰 변화가 없었던 반면 이온교환 후 입자의 비표면적이 30% 이상 증가함을 확인하였다. 특히 Ni의 도핑량이 증가함에 토라 입자의 비표면적도 함께 증가하였으며, 전자현미경 관찰결과 더욱 미세한 나노튜브가 형성됨을 확인할 수 있었다. P-C-T를 이용하여 측정한 순수한 티타네이트 나노튜브의 수소저장량이 20기압에서 1.2 wt% 정도로 측정된 반면 Ni이 5 wt% 첨가된 티타네이트 나노튜브의 경우 같은 압력에서 1.6 wt%를 나타내었다.

  • PDF

Glycothermal synthesis and characterization of $BaTiO_3$ glycolate (Glycothermal법에 의해 제조된 $BaTiO_3$ glycolate의 특성)

  • Kil, Hyun-Sig;Amar, Badrakh;Lim, Dae-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.286-287
    • /
    • 2006
  • Barium titanate ($BaTiO_3$) glycolate particles were synthesized at temperature as low as $100^{\circ}C$ through glycothermal reaction by using $Ba(OH)_2{\cdot}8H_2O$ and amorphous titanium hydrous gel as precursors and ethylene glycol as solvent. The particle size and morphology of $BaTiO_3$ glycolate powders can be controlled by varying the reaction conditions such as the reaction temperature and Ba:Ti molar ratio of starting precursors. After glycothermal treatment at $220^{\circ}C$ for 24 h in 1.25:1(Ba:Ti), the average particle size of the $BaTiO_3$ glycolate powder was about 200-400 nm and low agglomeration. $BaTiO_3$ powders were formed by heat-treating the glycolate powder in air at $500-1000^{\circ}C$. As a result, the size of $BaTiO_3$ crystallites changed from around 50-300 nm. It is also demonstrated that the size and shape of $BaTiO_3$ particles investigated as a function of calcination temperature. The $BaTiO_3$ particles obtained from optimum synthesis condition were pressed, sintered and measured for the dielectric property. The $BaTiO_3$ ceramics sintered at $1250^{\circ}C$ for 2 h had 98 % of theoretical density. The ceramics have an average grain size of about $1\;{\mu}m$ and displays the high dielectric constant (~3100) and low dielectric loss (<0.1) at room temperature.

  • PDF

Hydrogen-Permselective TiO$_2$2/SiO$_2$2 Membranes Formed by Chemical Vapor Deposition

  • Nam, Suk-Woo;Ha, Heung-Yong;Yoon, Sung-Pil;Jonghee Han;Lim, Tae-Hoon;Oh, In-Hwan;Seong- Ahn Hong
    • Korean Membrane Journal
    • /
    • 제3권1호
    • /
    • pp.69-74
    • /
    • 2001
  • Films of TiO$_2$/SiO$_2$ were deposited on the inner surface of the porous glass support tubes by decomposition of tetraisopropyl titanate (TIPT) and tetraethyl orthosilicate (TEOS) at atmospheric pressure. Dense and hydrogen -permselective membranes were formed at 400-600$\^{C}$. The permeation rates of H$_2$ through the membrane at 600$\^{C}$ were 0.2-0.4 ㎤(STP)/min-㎠ atm and H$_2$:N$_2$permeation ratios were above 1000. The permeation properties of the membranes were investigated at various deposition temperatures and TIPT/TEOS concentrations. Decomposition of TIPT alone at temperatures above 400$\^{C}$ produced porous crystalline TiO$_2$ films and they were not H7-selective. Decomposition of TEOS produced H$_2$-permeable SiO$_2$ films at 400-600$\^{C}$ but film deposition rate was very low. Addition of TIFT to the TEOS stream significantly accelerated the deposition rate and produced highly H$_2$-selective films. Increasing the TIPT/TEOS concentration ratio increased the deposition rate. The TiO$_2$/SiO$_2$ membranes formed at 600 $\^{C}$ have the permeation properties comparable to those of SiO$_2$ membranes produced from TEOS.

  • PDF

Dielectric and Piezoelectric Properties Of Lead-free (Bi0.5Na0.5)TiO3-BaTiO3 Ferroelectric Ceramics (비납계 (Bi0.5Na0.5)TiO3-BaTiO3 강유전 세라믹 재료의 유전 및 압전 특성)

  • Kuk Min-Ho;Kim Myong-Ho;Cho Jung-A;Sung Yeon-Soo;Song Tae Kwon;Bae Dong-Sik;Jeong Soon-Jong;Song Jae-Sung
    • Korean Journal of Materials Research
    • /
    • 제15권11호
    • /
    • pp.683-689
    • /
    • 2005
  • The structural, piezoelectric and ferroelectric properties of $(1-x)(Bi_{0.5}Na_{0.5})TiO_3$ x=0.00, 0.02, 0.04, 0.06, 0.08, and 0.10) ceramics were investigated. A gradual change in the crystal and microstructures with tile increase of $BaTiO_3$ (BT) concentration was observed. The $(Bi_{0.5}Na_{0.5})TiO_3$ (BNT) samples show unusual properties as ferroelectric relaxer materials. We observed a phase transition in BNT solid solutions with BT having normal ferroelectric phase transition. At room temperature, BNT presents a single phase without the morphotropic phase boundary (MPB). In the case of samples doped with $4\~8 mol\%$ BT, rhombohedral-tetragonal MPB was formed and the piezoelectric properties were improved.

Fabrication of Ferroelectric BaTiO3Thin Film on Ti Substrate and Formation of Calcium Phosphate in Eagle’s MEM Solution (티타늄 기판 위에 강유전성 BaTiO3박막 형성과 분극처리에 의한 Eagle’s MEM 용액에서의 Calcium Phosphate 생성)

  • Lee, Yong-Ryeol;Jeong, Young-Hwa;Hwang, Kyu-Seog;Song, Ho-Jun;Park, Yeong-Joon
    • Korean Journal of Materials Research
    • /
    • 제12권7호
    • /
    • pp.560-567
    • /
    • 2002
  • Titanium (Ti) is a bioinert material and has lower elastic coefficient and better strength/volume property than other metals. Ferroelectric materials show alignment of positive and negative charges by poling treatment. This study was purposed to develop a new implant system by combining the advantages of Ti and ferroelectric property of $BaTiO_3$ (BTO). It was performed with the assumption that the $Ca^{2+ }$ ions would be easily attracted on negatively charged surface and the attracted cation might behave as nuclei for bone-like crystal growth in biological solutions. A ferroelectric BTO thin film on Ti was fabricated and the effect of poling treatment on the improvement of calcium phosphate (Ca-P) formation in biological solutions was evaluated. After immersion in Eagle’s minimum essential media (MEM) solution, NaCl was formed on Ti, and Ca-P layer containing NaCl was formed on Ti-O. Weak and sparse Ca-P layers were formed on BTO, while thick, homogeneous, and dense Ca-P layer was formed on negatively polarized BTO (N-BTO), which was confirmed by FE-SEM and EDX. In summary, these results demonstrate that poling the ferroelectric BTO surface negatively is effective for the formation of Ca-P layer in MEM solution, and that N-BTO coating on Ti could be used as a possible alternative method for enhancing the osseointegration of the implants.

Nb-doping Effects on Ferroelectric and Piezoelectric Properties of Pb-free Bi0.5Na0.5 (비납계 Bi0.5Na0.5의 강유전 및 압전 특성에 미치는 Nb-doping 효과)

  • Yeo, Hong-Goo;Sung, Yeon-Soo;Song, Tae-Kwon;Cho, Jong-Ho;Jeong, Soon-Jong;Song, Jae-Sung;Kim, Myong-Ho
    • Korean Journal of Materials Research
    • /
    • 제16권11호
    • /
    • pp.705-709
    • /
    • 2006
  • Nb was doped to Pb-free $(Bi_{0.5}Na_{0.5})TiO_3$ (BNT) by a solid state mixing process to form $(Bi_{0.5}Na_{0.5})Ti_{1-x}Nb_xO_3\;(x=0{\sim}0.05)$ (BNTNb) and its doping effects on ferroelectric and piezoelctric properties of BNT were investigated. The BNTNb solid solutions were formed up to x=0.01 with no apparent second phases while grain sizes decreased. As x increased, coercive field ($E_c$) and mechanical quality factor ($Q_m$) decreased but piezoelectric constant ($d_{33}$) increased, which indicates Nb acts as a donor for BNT.