• Title/Summary/Keyword: tissue-specific cDNA libraries

Search Result 9, Processing Time 0.021 seconds

Survey of Expressed Sequence Tags from Tissue-Specific cDNA Libraries in Hemibarbus mylodon, an Endangered Fish Species (멸종위기 어류 어름치 Hemibarbus mylodon (Cypriniformes)로부터 조직별 EST library 제작 및 발현 유전자 탐색)

  • Bang, In-Chul;Lim, Yoon-Hee;Cho, Young-Sun;Lee, Sang-Yoon;Nam, Yoon-Kwon
    • Journal of Aquaculture
    • /
    • v.20 no.4
    • /
    • pp.248-254
    • /
    • 2007
  • Representative cDNA libraries were constructed from various tissue sources of Hemibarbus mylodon, an endangered freshwater fish species in Korea, for the mining of expressed sequence tags (ESTs). Randomized and non-normalized EST analysis was performed with 7 unidirectional cDNA libraries generated from brain, intestine, kidney, liver, muscle, ovary or testis. Of 3,383 ESTs in total, the number of singleton was 2,029, and 333 contigs containing 1,354 ESTs were assembled (percent of unigene = 70.0%). Abundantly expressed gene transcripts and broad clustering of putative gene function were tissue-specific in general, and the redundancy was also variable among those libraries. Over half of H. mylodon ESTs were matched with orthologues from other teleosts among which zebrafish gene sequences were the most frequent in those matches. This initial setting of EST libraries achieved in the present study would be a fundamental basis for the banking of gene resources from this endangered fish species.

Construction of Ovine Customer cDNA Chip and Analysis of Gene Expression Patterns in the Muscle and Fat Tissues of Native Korean Cattle (cDNA microarray를 이용하여 한우의 근육과 지방조직의 유전자 발현 패턴 분석 및 bovine customer cDNA chip 구성 연구)

  • Han, Kyung Ho;Choi, Eun Young;Hong, Yeon-Hee;Kim, Jae Yeong;Choi, In Soon;Lee, Sang-Suk;Choi, Yun Jaie;Cho, Kwang Keun
    • Journal of Life Science
    • /
    • v.25 no.4
    • /
    • pp.376-384
    • /
    • 2015
  • To investigate the molecular events of controlling intramuscular fat (or marbling), which is an important factor in the evaluation of beef quality, we performed cDNA microarray analyses using the longissimus dorsi muscle and back fat tissues. For this study, we constructed normalized cDNA libraries: fat tissues in native Korean cattle (displaying 1,211 specific genes), and muscle tissues in native Korean cattle (displaying 1,346 specific genes). A bovine cDNA chip was constructed with 1,680 specific genes, consisting of 760 genes from muscle tissues and 920 genes from fat tissues. The microarray analysis in this experiment showed a number of differentially expressed genes, which compared the longissimus dorsi muscle (Cy5) with back fat tissue (Cy3). Among many specific differentially expressed genes, 12-lipoxygenase (oxidizing esterified fatty acids) and prostaglandin D synthase (differentiation of fibroblasts to adipocytes) are the key candidate enzymes that should be involved in controlling the accumulation of intramuscular fat. In this study, differentially and commonly expressed genes in the muscle and fat tissues of native Korean cattle were found in large numbers, using the hybridization assay. The expression levels of the selected genes were confirmed by semi-quantitative RT-PCR, and the results were similar to those of the cDNA microarray.

Toward Functional Genomics of Plant-Pathogen Interactions: Isolation and Analysis of Defense-related Genes of Rot Pepper Expressed During Resistance Against Pathogen

  • Park, Do-Il;Lee, Sang-Hyeob
    • The Plant Pathology Journal
    • /
    • v.18 no.2
    • /
    • pp.63-67
    • /
    • 2002
  • To understand plant-pathogen interactions, a complete set of hot pepper genes differentially expressed against pathogen attack was isolated. As an initial step, hundreds of differentially expressed cDNAS were isolated from hot pepper leaves showing non-host resistance against bacterial plant pathogens (Xanthomonas campestris pv. glycines and Pseudomonas syringae pv. syringae) using differential display reverse transcription polymerase chain reaction (DDDRT-PCR) technique. Reverse Northern and Northern blot analyses revealed that 50% of those genes were differentially expressed in pepper loaves during non-host resistance response. Among them, independent genes without redundancy were micro-arrayed for further analysis. Random EST sequence database were also generated from various CDNA libraries including pepper tissue specific libraries and leaves showing non-host hypersensitive response against X. campestris pv. glycines. As a primary stage, thousands of cDNA clones were sequenced and EST data were analyzed. These clones are being spotted on glass slide to study the expression profiling. Results of this study may further broaden knowledge on plant-pathogen interactions.

Tissue-specific Expressed Sequence Tags from the Olive flounder, Paralichthys olivaceus

  • Kim, Young-Ok;Lee, Jeong-Ho;Kim, Kyung-Kil;Lee, Jong-yun
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2002.10a
    • /
    • pp.181-182
    • /
    • 2002
  • Expressed sequence tags (ESTs) are generated by single-pass DNA sequencing of clones obtained from cDNA libraries and are powerful tool in the genetic characterization of organisms, owing in large part to the speed and affordability of generating these sequences. Comparison of sequences obtained with those available in public sequence databases allows putative identification of many genes. (omitted)

  • PDF

Identification of genes expressed in abalone tissues(Haliotis discus hannai) using expressed sequence tags

  • Nam, Yoon-Kwon;Lee, Sang-Jun;Kim, Koung-Kil;Park, Ji-Eun;Kim, Dong-Soo
    • Proceedings of the Korean Aquaculture Society Conference
    • /
    • 2003.10a
    • /
    • pp.44-44
    • /
    • 2003
  • Gene expression in five tissues of the abalone (Haliotis discus hannai) was investigated using an expressed sequence tag (EST) analysis. Randomly selected clones were obtained from cDNA libraries constructed with gill (GI), digestive diverticula(DD), hepatopancreas (HP), foot/mucus (FM) and rectangular muscle (RM). Of 1,235 clonesanalyzed (288 clones for GI, DD, HP each,166 for FM, and 205 for RM), 741 (60.0%) clones in total turned out to share significant similarity with the sequences from NCBI GenBank (less than 10/sup -3/ of e-values), 423 sequences showed poor similarity (> 10/sup -3/), and 71 sequences didn't match with any sequences in GenBank. The percent unique sequence (singleton) was ranged from 56.1% (RM) to 74.7% (FM) among libraries. On the other hand, overall percent singleton was 55.3% when all the ESTs from five libraries were assembled into contigs. Analysis of the organisms represented by the best hit for each EST (e-values < 10/sup -3/) showed that 23.8% matched with mammalian entries, 24.0% with mollusks, 14.4% with insects, 11.6% with fish and 26.2% with others. The expressed patterns differed among the tissues when judged by the categorization of the sequences from each library into 10 broad functional classes. In all the libraries, the class I (no hit o. poor similarity) was the largest category with an average of 40.1%. This largest class was followed by class V (general metabolisms) in DD (21.9%), GI (14.6%) and HP (16.7%), while the 'cell structure and motility'(class VI) was the second largest class in remaining two libraries (31.2% for RM and 9.6% for FM). The class IX (cell division and proliferation) was the smallest class in all the libraries (less than 3%). This report provides the first tissue-specific lists of expressed abalone genes, which could be a fundamental basis for genomics program of abalone species.

  • PDF

Functional Analysis of Expressed Sequence Tags from Hanwoo (Korean Cattle) cDNA Libraries (한우 cDNA 라이브러리에서 발현된 ESTs의 기능분석)

  • Lim, Da-Jeong;Byun, Mi-Jeong;Cho, Yong-Min;Yoon, Du-Hak;Lee, Seung-Hwan;Shin, Youn-Hee;Im, Seok-Ki
    • Journal of Animal Science and Technology
    • /
    • v.51 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • We generated 57,598 expressed sequence tags (ESTs) from 3 cDNA libraries of Hanwooo (Korean Cattle), fat, loin, liver. Liver, intermuscular fat and longissimus dorsi tissues were obtained from a 24-month-old Hanwoo steer immediately after slaughter. cDNA library was constructed according to the oligocapped method. The EST data were clustered and assembled into unique sequences, 4,759 contigs and 7,587 singletons. To carry out functional analysis, Gene Ontology annotation and identification of significant leaf nodes were performed that were detected by searching significant p-values from $2^{nd}$ level GO terms to leaf nodes using Bonferroni correction. We found that 13, 26 and 8 significant leaf nodes are unique in the transcripts according to 3 GO categories, molecular function, biological process and cellular component. Also digital gene expression profiling using the Audic's test was performed and tissue specific genes were detected in the above 3 libraries.

The Brassica rapa Tissue-specific EST Database (배추의 조직 특이적 발현유전자 데이터베이스)

  • Yu, Hee-Ju;Park, Sin-Gi;Oh, Mi-Jin;Hwang, Hyun-Ju;Kim, Nam-Shin;Chung, Hee;Sohn, Seong-Han;Park, Beom-Seok;Mun, Jeong-Hwan
    • Horticultural Science & Technology
    • /
    • v.29 no.6
    • /
    • pp.633-640
    • /
    • 2011
  • Brassica rapa is an A genome model species for Brassica crop genetics, genomics, and breeding. With the completion of sequencing the B. rapa genome, functional analysis of the genome is forthcoming issue. The expressed sequence tags are fundamental resources supporting annotation and functional analysis of the genome including identification of tissue-specific genes and promoters. As of July 2011, 147,217 ESTs from 39 cDNA libraries of B. rapa are reported in the public database. However, little information can be retrieved from the sequences due to lack of organized databases. To leverage the sequence information and to maximize the use of publicly-available EST collections, the Brassica rapa tissue-specific EST database (BrTED) is developed. BrTED includes sequence information of 23,962 unigenes assembled by StackPack program. The unigene set is used as a query unit for various analyses such as BLAST against TAIR gene model, functional annotation using MIPS and UniProt, gene ontology analysis, and prediction of tissue-specific unigene sets based on statistics test. The database is composed of two main units, EST sequence processing and information retrieving unit and tissue-specific expression profile analysis unit. Information and data in both units are tightly inter-connected to each other using a web based browsing system. RT-PCR evaluation of 29 selected unigene sets successfully amplified amplicons from the target tissues of B. rapa. BrTED provided here allows the user to identify and analyze the expression of genes of interest and aid efforts to interpret the B. rapa genome through functional genomics. In addition, it can be used as a public resource in providing reference information to study the genus Brassica and other closely related crop crucifer plants.

Immunogenomics approaches to study host innate immunity against intestinal parasites

  • Lillehoj, Hyun S.
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2006.11a
    • /
    • pp.7-16
    • /
    • 2006
  • Poultry products including meat and eggs constitute a major protein source in the American diet and disease - causing pathogens represent major challenges to the poultry industry. More than 95 % of pathogens enter the host through the mucosal surfaces of the respiratory, digestive and reproductive tracts and over the past few decades, the two main mechanisms used to control diseases have been the use of vaccines and antibiotics. However, in the poultry industry, there are mounting concerns over the ability of current vaccines to adequately protect against emerging hyper - virulent strains of pathogens and a lack of suitable, cost effective adjuvants. Thorough investigation of the immunogenetic responses involved in host-pathogen interactions will lead to the development of new and effective strategies for improving poultry health, food safety and the economic viability of the US poultry industry. In this paper, I describe the development of immunogenomic and proteomic tools to fundamentally determine and characterize the immunological mechanisms of the avian host to economically significant mucosal pathogens such as Eimeria. Recent completion of poultry genome sequencing and the development of several tissue-specific cDNA libraries in chickens are facilitating the rapid application of functional immunogenomics in the poultry disease research. Furthermore, research involving functional genomics, immunology and bioinformatics is providing novel insights into the processes of disease and immunity to microbial pathogens at mucosal surfaces. In this presentation, a new strategy of global gene expression using avian macrophage (AMM) to characterize the multiple pathways related to the variable immune responses of the host to Eimeria is described. This functional immunogenomics approach will increase current understanding of how mucosal immunity to infectious agents operates, and how it may be enhanced to enable the rational development of new and effective strategies against coccidiosis and other mucosal pathogens.

  • PDF

High-throughput Gene Expression Analysis to Investigate Host-pathogen Interaction in Avian Coccidiosis

  • Lillehoj Hyun, S.
    • Korean Journal of Poultry Science
    • /
    • v.34 no.1
    • /
    • pp.77-83
    • /
    • 2007
  • Poultry products including meat and eggs constitute a major protein source in the American diet and disease-causing pathogens represent major challenges to the poultry industry. More than 95% of pathogens enter the host through the mucosal surfaces of the respiratory, digestive and reproductive tracts and over the past few decades, the two main mechanisms used to control diseases have been the use of vaccines and antibiotics. However, in the poultry industry, there are mounting concerns over the ability of current vaccines to adequately protect against emerging hyper-virulent strains of pathogens and a lack of suitable, cost effective adjuvants. Thorough investigation of the immunogenetic responses involved in host-pathogen interactions will lead to the development of new and effective strategies for improving poultry health, food safety and the economic viability of the US poultry industry. In this paper, I describe the development of immunogenomic and proteomic tools to fundamentally determine and characterize the immunological mechanisms of the avian host to economically significant mucosal pathogens such as Eimeria. Recent completion of poultry genome sequencing and the development of several tissue-specific cDNA libraries in chickens are facilitating the rapid application of functional immunogenomics in the poultry disease research. Furthermore, research involving functional genomics, immunology and bioinformatics is providing novel insights into the processes of disease and immunity to microbial pathogens at mucosal surfaces. In this presentation, a new strategy of global gene expression using avian macrophage (AMM) to characterize the multiple pathways related to the variable immune responses of the host to Eimeria is described. This functional immunogenomics approach will increase current understanding of how mucosal immunity to infectious agents operates, and how it may be enhanced to enable the rational development of new and effective strategies against coccidiosis and other mucosal pathogens.