• Title/Summary/Keyword: tissue-engineering

Search Result 1,859, Processing Time 0.03 seconds

Effect of dietary lutein on the egg production, fertility, and oxidative injury indexes of aged hens

  • N. Liu;X. Ji;Z. Song;X. Deng;J. Wang
    • Animal Bioscience
    • /
    • v.36 no.8
    • /
    • pp.1221-1227
    • /
    • 2023
  • Objective: The present study aimed to investigate the effect of dietary lutein on egg production, follicles, reproductive hormones, fertility, hatchability, and oxidative injury indexes of hens. Methods: Treatments consisted of a control diet (CON) and three lutein-supplementing diets at 25 (L1), 50 (L2), or 75 (L3) mg/kg of diet. Egg production was measured using 576 Arbor Acres breeder hens at 61 to 65 wk and follicles grades, reproductive hormones, fertility, hatchability, tissue lutein contents, and oxidative injury indexes were determined at 65 wk. Results: The results showed that at 65 wk, lutein- supplementing diets increased (p<0.05) egg production, follicular grades, fertility, hatchability, estradiol (E2), luteinizing hormone, progesterone (PROG), lutein content in the serum and yolk, compared to CON. L2 and L3 showed more pronounced (p<0.05) effects on egg production, PROG, and yolk lutein content than L1. With the increase of lutein doses from 25 to 75 mg/kg, there were linear increases (p<0.05) in egg production, lutein content, and PROG, and a quadratic trend (p<0.05) in E2. For the oxidative injury products, lutein-supplementing diets decreased (p<0.05) malondialdehyde (MDA) and protein carbonyl (PCO) in the serum, MDA and 8-hydroxy 2 deoxyguanosine (8-OHdG) in the yolk. There were linear decreases (p<0.05) in 8-OHdG in the serum, MDA, PCO, and 8-OHdG in the yolk, a quadratic trend (p<0.05) on serum 8-OHdG. Conclusion: It is concluded that lutein supplementation can improve egg production and fertility by beneficially regulating reproductive hormones and oxidative status in aged hens.

Inhibition of Human Periodontal Stem Cell Death Following the Antioxidant Action of Celecoxib (Celecoxib의 항산화 작용에 따른 성체 치주인대 줄기세포 사멸억제)

  • Kyung-Hee Lee
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.2
    • /
    • pp.169-179
    • /
    • 2023
  • Purpose : Although human periodontal ligament stem cells (hPDLSCs) are a supportive factor for tissue engineering, oxidative stress during cell culture and transplantation has been shown to affect stem cell viability and mortality, leading to failed regeneration. The aim of this study was to evaluate the antioxidant and protective effects against cell damage of celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, and the antioxidant signal of hPDLSCs in H2O2-induced oxidative stress. Methods : To induce oxidative stress in cultured hPDLSCs, H2O2 was used as an exogenous reactive oxygen species (ROS). Dose-dependent celecoxib (.1, 1, 10, or 100 µM) was administered after H2O2 treatment. WST-1 assay was used to assess cell damage and western blot was used to observe antioxidant activity of hPDLSCs in oxidative stress. Immunohistochemistry was performed for inverting the localization of the SOD and Nrf2 antibody. Results : We found that progressive cell death was induced in hPDLSCs by H2O2 treatment. However, low-dose celecoxib reduced H2O2-induced cellular damage and eventually enhanced the SOD activity and Nrf2 signal of hPDLSCs. Oxidative stress-induced morphological change in hPDLSCs included lowered the survival and number of spindle-shaped cells, and shrinkage and shortening of cell fibers. Notably, celecoxib promoted cell survival function and activated antioxidants such as SOD and Nrf2 by positively regulating the cell survival signal pathway, and also reduced the number of morphological changes in hPDLS. Immunohistochemistry results showed a greater number of SOD- and Nrf2-stained cells in the celecoxib-treated group following oxidative stress. Conclusion : By increasing SOD and Nrf2 expression at the antioxidant system, the findings suggest that celecoxib enhanced the antioxidative ability of hPDLSCs and protected cell viability against H2O2-induced oxidative stress by increasing SOD and Nrf2 expression in the antioxidant system.

Bone Regenerative Effects of Biphasic Calcium Phosphate Collagen, Bone Morphogenetic Protein 2, Mesenchymal Stem Cells, and Platelet-Rich Plasma in an Equine Bone Defect Model

  • Eun-bee Lee;Hyunjung Park;Jong-pil Seo
    • Journal of Veterinary Clinics
    • /
    • v.40 no.2
    • /
    • pp.85-92
    • /
    • 2023
  • Fractures in the horse industry are challenging and a common cause of death in racehorses. To accelerate fracture healing, tissue engineering (TE) provides promising ways to regenerate bone tissues. This study aimed to evaluate the osteogenic effects of biphasic calcium phosphate collagen (BCPC) graft, bone morphogenetic protein 2 (BMP2), mesenchymal stem cell (MSC), and platelet-rich plasma (PRP) treatments in horses. Four thoroughbred horses were included in the study, and, in each horse, three cortical defects with a diameter of 5 mm and depth of 10 mm were formed in the third metacarpal bones (MC) and metatarsal bones (MT). The defects were randomly assigned to one of six treatment groups (saline, BCPC, BMP2, MSC, PRP, and control). Injections of saline, BMP2, PRP, or MSCs were made at 1, 3, and 5 weeks after defect surgery. Bone regeneration effects were assessed by radiography, quantitative computed tomography (QCT), micro-computed tomography (μCT), histopathological, and histomorphometric evaluation. The new bone ratio (%) in the histomorphometric evaluation was higher in the BMP2 group than in the control and saline groups. Radiographic and QCT values were significantly higher in the BCPC groups than in the other groups. QCT values of the BMP2 group were significantly higher than in the control and saline groups. The present study demonstrated that BCPC grafts were biologically safe and showed osteoconductivity in horses and the repeated injections of BMP2 without a carrier can be simple and promising TE factors for treating horses with bone fractures.

Repair of sports bone injury based on multifunctional nanomaterial particles

  • Dongbai Guo
    • Structural Engineering and Mechanics
    • /
    • v.86 no.4
    • /
    • pp.487-501
    • /
    • 2023
  • Nanoparticles have lower size and larger specific surface area, good stability and less toxic and side effects. In recent years, with the development of nanotechnology, its application range has become wider and wider, especially in the field of biomedicine, which has received more and more attention. Bone defect repair materials with high strength, high elasticity and high tissue affinity can be prepared by nanotechnology. The purpose of this paper was to study how to analyze and study the composite materials for sports bone injury based on multifunctional nanomaterials, and described the electrospinning method. In this paper, nano-sized zirconia (ZrO2) filled micro-sized hydroxyapatite (HAP) composites were prepared according to the mechanical properties of bone substitute materials in the process of human rehabilitation. Through material tensile and compression experiments, the performance parameters of ZrO2/HAP composites with different mass fraction ratios were analyzed, the influence of filling ZrO2 particles on the mechanical properties of HAP matrix materials was clarified, and the effect of ZrO2 mass fraction on the mechanical properties of matrix materials was analyzed. From the analysis of the compressive elastic modulus, when the mass fraction of ZrO2 was 15%, the compressive elastic modulus of the material was 1222 MPa, and when 45% was 1672 MPa. From the analysis of compression ratio stiffness, when the mass fraction of ZrO2 was 15%, the compression ratio stiffness was 658.07 MPa·cm3/g, and when it was 45%, the compression ratio stiffness is 943.51MPa·cm3/g. It can be seen that by increasing the mass fraction of ZrO2, the stiffness of the composite material can be effectively increased, and the ability of the material to resist deformation would be increased. Typically, the more stressed the bone substitute material, the greater the stiffness of the compression ratio. Different mass fractions of ZrO2/HAP filling materials can be selected to meet the mechanical performance requirements of sports bone injury, and it can also provide a reference for the selection of bone substitute materials for different patients.

Fucoxanthin derivatives from Sargassum siliquastrum inhibit matrix metalloproteinases by suppressing NF-κB and MAPKs in human fibrosarcoma cells

  • Nguyen, Van-Tinh;Qian, Zhong-Ji;Lee, Bonggi;Heo, Soo-Jin;Kim, Kil-Nam;Jeon, You-Jin;Park, Won Sun;Choi, Il-Whan;Jang, Chul Ho;Ko, Seok-Chun;Park, Sun-Joo;Kim, Yong-Tae;Kim, GeunHyung;Lee, Dae-Sung;Yim, Mi-Jin;Je, Jae-Young;Jung, Won-Kyo
    • ALGAE
    • /
    • v.29 no.4
    • /
    • pp.355-366
    • /
    • 2014
  • Fucoxanthin is known to be an effective cell proliferation inhibitor with anti-tumor and anti-angiogenic activities. However, there is a lack of data regarding the biological effects of cis isomers of fucoxanthin. To assess the potential therapeutic properties of 9'-cis-(6'R) fucoxanthin (FcA), and 13-cis and 13'-cis-(6'R) fucoxanthin complex (FcB) isolated from Sarggassum siliquastrum, we investigated their inhibitory effects on matrix metalloproteinases (MMPs) in phorbol 12-myristate 13-acetate (PMA)-induced human fibrosarcoma (HT1080) cells. FcA and FcB reduced MMP-2 and MMP-9 protein and mRNA levels, as well as the migration of these cells, in a dose-dependent manner. Additionally, FcA and FcB increased levels of MMPs inhibition factors such as tissue inhibitor of metalloproteinase-1. FcA and FcB significantly inhibited the transcriptional activity of nuclear factor ${\kappa}B$ (NF-${\kappa}B$) and by inhibiting c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases. Our results demonstrate that suppression of the NF-${\kappa}B$, JNK, and p38 signaling pathways may inhibit PMA-induced MMP-2 and MMP-9 activity. Therefore, FcA and FcB may be useful in noninvasive therapeutic strategies against fibrosarcoma metastasis.

The Effects of Solanum nigum Linne extract on the Hepatotoxicity of Rats Induced by Lipopolysaccharide (Lipopolysaccharide로 유발된 간독성에 대한 까마중의 효과)

  • Heo, Ye-Young;Kwon, Ryun-Hee;Ha, Mi-Sook;Ha, Bae-Jin
    • Journal of Food Hygiene and Safety
    • /
    • v.24 no.3
    • /
    • pp.285-290
    • /
    • 2009
  • This study aimed to investigate the protective effect of Solanum nigum Linne total extract (SNT), Solanum nigum Linne leaf extract (SNL), Solanum nigum Linne root extract (SNR) on liver injury induced by Lipopolysaccharide(LPS) in Sprague-Dawley rats. SNT, SNL, SNR of 100 mg/kg concentration was intraperitoneally administered into rats at dose of 1.5 ml/kg for 20 days. on the day 1.5 ml/kg of LPS was injected. Four hours later, they were anesthetization with ether and dissected. Glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT) were measured in serum and superoxide dismutase (SOD), catalase and glutathione peroxidase (GPX) were measured in liver homogenate. SNT, SNL, SNR extract inhibited GOT and GPT activities in LPS-induced rats, whereas increased SOD, Catalase and GPX activity in liver tissue of LPS-induced rats. These suggested that SNT, SNL, SNR could be used for functional beverage.

A Numerical Voxel Model for 3D-printed Uncompressed Breast Phantoms (3D 프린팅 비압박 유방 팬텀 제작을 위한 복셀 기반 수치 모델에 관한 연구)

  • Youn, Hanbean;Baek, Cheol Ha;Jeon, Hosang;Kim, Jinsung;Nam, Jiho;Lee, Jayoung;Lee, Juhye;Park, Dahl;Kim, Wontaek;Ki, Yongkan;Kim, Donghyun;Won, Jong Hun;Kim, Ho Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.3
    • /
    • pp.116-122
    • /
    • 2017
  • Physical breast phantoms would be useful for the development of a dedicated breast computed tomography (BCT) system and its optimization. While the conventional breast phantoms are available in compressed forms, which are appropriate for the mammography and digital tomosynthesis, however, the BCT requires phantoms in uncompressed forms. Although simple cylindrical plastic phantoms can be used for the development of the BCT system, they will not replace the roles of uncompressed phantoms describing breast anatomies for a better study of the BCT. In this study, we have designed a numerical voxel breast phantom accounting for the random nature of breast anatomies and applied it to the 3D printer to fabricate the uncompressed anthropomorphic breast phantom. The numerical voxel phantom mainly consists of the external skin and internal anatomies, including the ductal networks, the glandular tissues, the Cooper's ligaments, and the adipose tissues. The voxel phantom is then converted into a surface data in the STL file format by using the marching cube algorithm. Using the STL file, we obtain the skin and the glandular tissue from the 3D printer, and then assemble them. The uncompressed breast phantom is completed by filling the remaining space with oil, which mimics the adipose tissues. Since the breast phantom developed in this study is completely software-generated, we can create readily anthropomorphic phantoms accounting for diverse human breast anatomies.

Molecular Cloning and Function Analysis of an Anthocyanidin Synthase Gene from Ginkgo biloba, and Its Expression in Abiotic Stress Responses

  • Xu, Feng;Cheng, Hua;Cai, Rong;Li, Lin Ling;Chang, Jie;Zhu, Jun;Zhang, Feng Xia;Chen, Liu Ji;Wang, Yan;Cheng, Shu Han;Cheng, Shui Yuan
    • Molecules and Cells
    • /
    • v.26 no.6
    • /
    • pp.536-547
    • /
    • 2008
  • Anthocyanidin synthase (ANS, leucoanthocyanidin oxygenase), a 2-oxoglutarate iron-dependent oxygenase, catalyzed the penultimate step in the biosynthesis of the anthocyanin class of flavonoids, from the colorless leucoanthocyanidins to the colored anthocyanidins. The full-length cDNA and genomic DNA sequences of ANS gene (designated as GbANS) were isolated from Ginkgo biloba for the first time. The full-length cDNA of GbANS contained a 1062-bp open reading frame (ORF) encoding a 354-amino-acid protein. The genomic DNA analysis showed that GbANS gene had three exons and two introns. The deduced GbANS protein showed high identities to other plant ANSs. The conserved amino acids (H-X-D) ligating ferrous iron and residues (R-X-S) participating in 2-oxoglutarate binding were found in GbANS at the similar positions like other ANSs. Southern blot analysis indicated that GbANS belonged to a multi-gene family. The expression analysis by real-time PCR showed that GbANS expressed in a tissue-specific manner in G. biloba. GbANS was also found to be up-regulated by all of the six tested abiotic stresses, UV-B, abscisic acid, sucrose, salicylic acid, cold and ethylene, consistent with the promoter region analysis of GbANS. The recombinant protein was successfully expressed in E. coli strain with pET-28a vector. The in vitro enzyme activity assay by HPLC indicated that recombinant GbANS protein could catalyze the formation the cyanidin from leucocyanidin and conversion of dihydroquercetin to quercetin, suggesting GbANS is a bifunctional enzyme within the anthocyanidin and flavonol biosynthetic pathway.

Evaluation of the Secondary Particle Effect in Inhomogeneous Media for Proton Therapy Using Geant4 Based MC Simulation (Geant4 몬테칼로 시뮬레이션을 활용한 불균질 매질에서의 양성자의 이차입자 영향 분석)

  • Park, So-Hyun;Jung, Won-Gyun;Rah, Jeong-Eun;Park, Sung-Yong;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.21 no.4
    • /
    • pp.311-322
    • /
    • 2010
  • In proton therapy, the analysis of secondary particles is important due to delivered dose outside the target volume and thus increased potential risk for the development of secondary cancer. The purpose of this study is to analyze the influence of secondary particles from proton beams on fluence and energy deposition in the presence of inhomogeneous material by using Geant4 simulation toolkit. The inhomogeneity was modeled with the condition that the adipose tissue, bone and lung equivalent slab with thickness of 2 cm were inserted at 30% (Plateau region) and 80% (Bragg peak region) dose points of maximum dose in Bragg curve. The energy of proton was varied with 100, 130, 160 and 190 MeV for energy dependency. The results for secondary particles were presented for the fluence and deposited energy of secondary particles at inhomogeneous condition. Our study demonstrates that the fluence of secondary particles is neither influenced insertion of inhomogeneties nor the energy of initial proton, while there is a little effect by material density. The deposited energy of secondary particles has a difference in the position placed inhomogeneous materials. In the Plateau region, deposited energy of secondary particles mostly depends on the density of inserted materials. Deposited energy in the Bragg region, in otherwise, is influenced by both density of inserted material and initial energy of proton beams. Our results suggest a possibility of prediction about the distribution of secondary particles within complex heterogeneity.

Cytotoxicity of Hyaluronic Acid Membrane Cross-linked with Lactide (락타이드로 가교시킨 히아루론산 막의 세포독성)

  • Kim, Won-Jung;Kwon, Ji-Young;Cheong, Seong-Ihl;Kim, In-Seop
    • KSBB Journal
    • /
    • v.21 no.4
    • /
    • pp.255-259
    • /
    • 2006
  • The biodegradable hyaluronic acid(HA) membranes cross-linked with lactide using the crosslinking agent, 1-ethyl-3(3-dimethyl aminopropyl) carbodiimide(EDC) were prepared as a potential biocompatible material for tissue engineering. HA membranes having different mechanical properties were synthesised by varying degree of the mole ratio of lactide to HA, EDC concentration, and crosslinking temperature. HA membranes were degradable in water solution and the degradation became slower with the increasing mole ratio of lactide to HA. HA membranes were sterilized using ethylene oxide gas and extracted with cell culture medium for 24 h at $37^{\circ}C$ and 200 rpm. Cytotoxicity of the extract was tested using NIH/3T3 mouse embryo fibroblast as a model cell. Growth inhibition was not observed in the extracts of HA membranes with the mole ratios of lactide to HA, 5 or 10, and 10% EDC concentration, however 11% of growth inhibition was observed in the extract with the mole ratio of 13. Growth inhibition was not observed in the extracts of HA membranes prepared with 5% EDC or 10% EDC and the mole ratio of lactide to HA, 10, however 12% of growth inhibition was observed in the extract with 20% EDC. Cytotoxicity was not observed in the extracts of HA membranes prepared at varying crosslinking temperatures, $15^{\circ}C,\;25^{\circ}C,\;and\;28^{\circ}C$ with the mole ratio of lactide to HA, 10 and 10% EDC.