• Title/Summary/Keyword: tissue specific proteins

Search Result 153, Processing Time 0.029 seconds

Identification of Protein Markers Specific for Papillary Renal Cell Carcinoma Using Imaging Mass Spectrometry

  • Na, Chan Hyun;Hong, Ji Hye;Kim, Wan Sup;Shanta, Selina Rahman;Bang, Joo Yong;Park, Dongmin;Kim, Hark Kyun;Kim, Kwang Pyo
    • Molecules and Cells
    • /
    • v.38 no.7
    • /
    • pp.624-629
    • /
    • 2015
  • Since the emergence of proteomics methods, many proteins specific for renal cell carcinoma (RCC) have been identified. Despite their usefulness for the specific diagnosis of RCC, such proteins do not provide spatial information on the diseased tissue. Therefore, the identification of cancer-specific proteins that include information on their specific location is needed. Recently, matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) based imaging mass spectrometry (IMS) has emerged as a new tool for the analysis of spatial distribution as well as identification of either proteins or small molecules in tissues. In this report, surgical tissue sections of papillary RCC were analyzed using MALDI-IMS. Statistical analysis revealed several discriminative cancer-specific m/z-species between normal and diseased tissues. Among these m/z-species, two particular proteins, S100A11 and ferritin light chain, which are specific for papillary RCC cancer regions, were successfully identified using LC-MS/MS following protein extraction from independent RCC samples. The expressions of S100A11 and ferritin light chain were further validated by immunohistochemistry of human tissues and tissue microarrays (TMAs) of RCC. In conclusion, MALDI-IMS followed by LC-MS/MS analysis in human tissue identified that S100A11 and ferritin light chain are differentially expressed proteins in papillary RCC cancer regions.

Tissue-Specific Expression of Nebulin Isoform Proteins in Chicken (닭 조직에 따른 Nebulin Isoform 단백질의 특이적 발현)

  • 김영희;김정락
    • Biomedical Science Letters
    • /
    • v.6 no.3
    • /
    • pp.171-179
    • /
    • 2000
  • The lengths of thick and thin filaments in the sarcomeres of most vertebrate skeletal muscles are precisely regulated and are important structural parameters in understanding muscle contraction. Nebulin is a usually large protein that spans the whole length of thin filaments in the sarcomeres of skeletal muscles. In this paper we used SDS-PAGE and immunoblot to identify nebulin isoform proteins in muscle and non-muscle tissues. We prepared embryonic chicken tissues including skeletal muscle, cardiac muscle, smooth muscle, brain, liver to compare nebulin isoform proteins. The proteins were divided into soluble and insoluble fraction. As a result, we identified tissue specific expression of various nebulin isoform proteins in muscle and non-muscle tissues of chicken. Nebulin was detected in skeletal muscle of adult chicken about 500 kDa. Nebulett was expressed in cardiac muscle of embryonic and adult chicken about 107 kDa. A giant protein with molecular mass of about 380 kDa was identified in brain of non-muscle of chicken. This giant protein was detected in the soluble fraction of chicken embryo. The unequal distribution of the nebulin isoform proteins suggests tissue specific regulation of the isoform expression and indicates a functional specialization of the encoded isoform subtypes.

  • PDF

Transactivators for the Odontoblast-specific Gene Targeting

  • Chung, Kyung-Chul;Kim, Tak-Heun;Yang, Yeon-Mee;Baek, Jin-A;Ko, Seung-O;Cho, Eui-Sic
    • International Journal of Oral Biology
    • /
    • v.34 no.2
    • /
    • pp.105-113
    • /
    • 2009
  • Dentin, a major component of teeth, is formed by odontoblasts which produce the dentin matrix beneath the dental epithelium and induce the mineralization of dentin. To date, the biochemical properties of dentin matrix proteins have been well characterized, but upstream regulators of these proteins are not yet well known. Recently in this regard, several transcription factors have been identified as potential regulators of matrix proteins. Most transcription factors are generally involved in diverse biological processes and it is essential to identify those that are odontoblast-specific transactivators to further understand the process of dentin formation. We thus analyzed the expression pattern of dentin matrix proteins and the activities of established transactivators containing a Cre-locus. Expression analyses using in situ hybridization showed that dentin matrix proteins are sequentially expressed in differentiating odontoblasts, including type-I collagen, Dmp-1 and Dspp. The activities of the transactivators were evaluated using ${\beta}$-galactosidase following the generation of double transgenic mice with each transactivator and the ROSA26R reporter line. The ${\beta}$-galactosidase activity of each transactivator paralled the expression of the matrix proteins. These results thus showed that these transactivators could be utilized for odontoblastspecific conditional gene targeting. In addition, time- and tissue-specific conditional gene targeting might also be achieved using a combination of these transactivators. Odontoblast-specific conditional gene targeting with these transactivators will likely also provide new insights into the molecular mechanisms underlying dentin formation.

Tissue proteomics for cancer biomarker development - Laser microdissection and 2D-DIGE -

  • Kondo, Tadashi
    • BMB Reports
    • /
    • v.41 no.9
    • /
    • pp.626-634
    • /
    • 2008
  • Novel cancer biomarkers are required to achieve early diagnosis and optimized therapy for individual patients. Cancer is a disease of the genome, and tumor tissues are a rich source of cancer biomarkers as they contain the functional translation of the genome, namely the proteome. Investigation of the tumor tissue proteome allows the identification of proteomic signatures corresponding to clinico-pathological parameters, and individual proteins in such signatures will be good biomarker candidates. Tumor tissues are also a rich source for plasma biomarkers, because proteins released from tumor tissues may be more cancer specific than those from non-tumor cells. Two-dimensional difference gel electrophoresis (2D-DIGE) with novel ultra high sensitive fluorescent dyes (CyDye DIGE Fluor satulation dye) enables the efficient protein expression profiling of laser-microdissected tissue samples. The combined use of laser microdissection allows accurate proteomic profiling of specific cells in tumor tissues. To develop clinical applications using the identified biomarkers, collaboration between research scientists, clinicians and diagnostic companies is essential, particularly in the early phases of the biomarker development projects. The proteomics modalities currently available have the potential to lead to the development of clinical applications, and channeling the wealth of produced information towards concrete and specific clinical purposes is urgent.

Members of the ran family of stress-inducible small GTP-binding proteins are differentially regulated in sweetpotato plants

  • Kim, Young-Hwa;Huh, Gyung Hye
    • Journal of Plant Biotechnology
    • /
    • v.40 no.1
    • /
    • pp.9-17
    • /
    • 2013
  • Ran is a small GTP-binding protein that binds and subsequently hydrolyzes GTP. The functions of Ran in nuclear transport and mitotic progression are well conserved in plants and animals. In animal cells, stress treatments cause Ran relocalization and slowing of nuclear transport, but the role of Ran proteins in plant cells exposed to stress is still unclear. We have therefore compared Ran genes from three EST libraries construed from different cell types of sweetpotato and the distribution pattern of Ran ESTs differed according to cell type. We further characterized two IbRan genes. IbRan1 is a specific EST to the suspension cells and leaf libraries, and IbRan2 is specific EST to the root library. IbRan1 showed 94.6 % identity with IbRan2 at the amino acid level, but the C-terminal region of IbRan1 differed from that of IbRan2. These two genes showed tissue-specific differential regulation in wounded tissues. Chilling stress induced a similar expression pattern in both IbRan genes in the leaves and petioles, but they were differently regulated in the roots. Hydrogen peroxide treatment highly stimulated IbRan2 mRNA expression in the leaves and petioles, but had no significant effect on IbRan1 gene expression. These results showed that the transcription of these two IbRan genes responds differentially to abiotic stresses and that they are subjected to tissue-specific regulation. Plant Ran-type small G-proteins are a multigenic family, and the characterization of each Ran genes under various environmental stresses will contribute toward our understanding of the distinctive function of each plant Ran isoform.

Proteomic Analysis of Colonic Mucosal Tissue from Tuberculous and Ulcerative Colitis Patients

  • Kwon, Seong-Chun;Won, Kyung-Jong;Jung, Seoung-Hyo;Lee, Kang-Pa;Lee, Dong-Youb;Park, Eun-Seok;Kim, Bok-Yung;Cheon, Gab-Jin;Han, Koon-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.3
    • /
    • pp.193-198
    • /
    • 2012
  • Changes in the expression profiles of specific proteins leads to serious human diseases, including colitis. The proteomic changes related to colitis and the differential expression between tuberculous (TC) and ulcerative colitis (UC) in colon tissue from colitis patients has not been defined. We therefore performed a proteomic analysis of human TC and UC mucosal tissue. Total protein was obtained from the colon mucosal tissue of normal, TC, and UC patients, and resolved by 2-dimensional electrophoresis (2-DE). The results were analyzed with PDQuest using silver staining. We used matrix-assisted laser desorption ionization time-of-flight/time-of-flight spectrometry (MALDI TOF/TOF) to identify proteins differentially expressed in TC and UC. Of the over 1,000 proteins isolated, three in TC tissue and two in UC tissue displayed altered expression when compared to normal tissue. Moreover, two proteins were differentially expressed in a comparative analysis between TC and UC. These were identified as mutant ${\beta}$-actin, ${\alpha}$-enolase and Charcot-Leyden crystal protein. In particular, the expression of ${\alpha}$-enolase was significantly greater in TC compared with normal tissue, but decreased in comparison to UC, implying that ${\alpha}$-enolase may represent a biomarker for differential diagnosis of TC and UC. This study therefore provides a valuable resource for the molecular and diagnostic analysis of human colitis.

Regulation Mechanism of Soybean Storage Protein Gene Expression (대두 저장단백질 유전자의 발현 조절 메카니즘)

  • 최양도;김정호
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1987.07a
    • /
    • pp.283-307
    • /
    • 1987
  • Glycinin and $\beta$-conglycinin are the most abundant storage protein in soybean. These proteins are known to be synthesized predominantly during germination and cell expansion phase of seed development for short period, and synthesized not in other tissues. Genes encoding these storage proteins are useful system to study the mechanism of development stage and tissue specific gene expression in eukaryotes, especially plants, at the molecular level. The cDNA and genomic clones coding for glycinin have been isolated and regulation mechanism of the gene expression has been studied. Initially, development and tissue-specific expression of the glycinin gene is regulated at the level of transcription. Post-transcriptional processing is also responsible for delayed accumulation of the mRNA. Translational control of the storage protein gene has not been reported. Post-translational modification is another strategic point to regulate the expression of the gene. It is possible to identify positive and/or negative reguratory clements in vivo by producing transgenic plants agter gene manipulation. Elucidation of activation and repression mechanism of soybean storage protein genes will contribute to the understanding of the other plant and eukaryotic genes at molecular level.

  • PDF

In Vitro Assay of Mammary Gland Tissue Specific hEPO Gene Expression (hEPO 유전자의 유선조직 특이적 발현에 대한 In Vitro 검정)

  • Koo, Bon Chul;Kwon, Mo Sun;Kim, Teoan
    • Reproductive and Developmental Biology
    • /
    • v.40 no.1
    • /
    • pp.7-13
    • /
    • 2016
  • Effectiveness of transgene transfer into genome is crucially concerned in mass production of the bio-pharmaceuticals using genetically modified transgenic animals as a bioreactor. Recently, the mammary gland has been considered as a potential bioreactor for the mass production of the bio-pharmaceuticals, which appears to be capable of appropriate post-translational modifications of recombinant proteins. The mammary gland tissue specific vector system may be helpful in solving serious physiological disturbance problems which have been a major obstacle in successful production of transgenic animals. In this study, to minimize physiological disturbance caused by constitutive over-expression of the exogenous gene, we constructed new retrovirus vector system designed for mammary gland-specific expression of the hEPO gene. Using piggyBac vector system, we designed to express hEPO gene under the control of mammary gland tissue specific and lactogenic hormonal inducible goat ${\beta}$-casein or mouse Whey Acidic Protein (mWAP) promoter. Inducible expression of the hEPO gene was confirmed using RT-PCR and ELISA in the mouse mammary gland cells treated with lactogenic hormone. We expect the vector system may optimize production efficiency of transgenic animal and reduce the risk of global expression of transgene.

Construction of Artificial Epithelial Tissues Prepared from Human Normal Fibroblasts and C9 Cervical Epithelial Cancer Cells Carrying Human Papillomavirus Type 18 Genes

  • Eun Kyung Yang;Seu
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.1
    • /
    • pp.1-5
    • /
    • 1998
  • One cervical cancer cell line, C9, carrying human papillomavirus type 18 (HPV18) genes that is one of the major etiologic concoviruses for cervical cancer was characterized. This cell line was further characterized for its capacity related to the epithelial cell proliferation, stratification and differentiation in reconstituted artificial epithelial tissue. The in vitro construction of three dimensional artificial cervical opithelial tissue has been engineered using C9 epithelial cancer cells, human foreskin fibroblasts and a matrix made of type I collagen by organotypic culture of epithelial cells. The morphology of paraffin embedded artificial tissue was examined by histochemical staining. The artificial epithelial tissues were well developed having multilayer. However, the tissue morphology was similar to the cervical tissus having displasia induced by HPV infection. The characteristics of the artificial tissues were examined by determinining the expression of specific marker proteins. In the C9 derived artificial tissues, the expression of EGF receptor, as epithelial proliferation marker proteins for stratum basale was observed up to the stratum spinosum. Another epithelial proliferation marker for stratum spinosum, cytokerations 5/6/18, were observed well over the stratum spinosum. For the differentiation markers, the expression of involucrin and filaggrin were observed while the terminal differentiation marker, cytokeratins 10/13 was not detected at all. Therefore the reconstituted artificial epithelial tissues expressed the same types of differentiation marker proteins that are expressed in normal human cervical epithelial tissues but lacked the final differentiation capacity representing characteristics of C9 cell line as a cancer tissue devived cell line. Expression of HPV18 E6 oncoprotein was also observed in this artifical cervical opithelial tissue though the intensity of the staining was weak. Thus this artificial epithelial tissue could be used as a useful model system to examine the relationship between HPV-induced cervical oncogenesis and epithelial cell differentiation.

  • PDF

Identification and Characterization of Protease-Resistant Proteins from Adzuki Beans (소화 효소 저항성을 지니는 팥 단백질의 성질 규명)

  • Song, Eun-Jung;Park, Sun-Min;Wang, Qun;Lim, Jinkyu
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.3
    • /
    • pp.149-154
    • /
    • 2014
  • It is already known that adzuki beans (Vigna angularis) are able to control appetite. Therefore, this study tested the proteins isolated from adzuki beans for their protease resistance and interaction with the intestinal mucosa. The major proteins from adzuki beans were found to be resistant to the digestive enzymes pepsin and pancreatin, and were identified using 2D-SDS-polyacrylamide gel electrophoresis and mass spectrometry. The major adzuki proteins were easily fractionated by treating the soluble protein extract with 10mM $CaCl_2$, and were found to contain lactotransferrin, a homologous protein to the dynein light chain domain, proteinase inhibitor, and proteins with unknown functions. From a tissue binding assay using mouse intestinal tissue sections, the major protein fraction showed weak, yet significant and specific binding to the mucosa layer of the small intestine. Thus, the current results suggest that adzuki proteins are resistant to digestive enzymes, which enables them to survive protease digestion in the intestinal tract, plus they may interact with the intestinal mucosa layer. Therefore, the molecules responsible for controlling appetite in adzuki beans are presumably protease-resistant proteins that interact with the intestinal mucosa or delay digestion in the digestive tract.