• Title/Summary/Keyword: tip thickness

Search Result 283, Processing Time 0.03 seconds

Spinning Multi Walled Carbon Nanotubes and Flexible Transparent Sheet Film

  • Jang, Hun-Sik;Lee, Seok-Cheol;Kim, Ho-Jong;Jeong, In-Hyeon;Park, Jong-Seo;Nam, Seung-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.200-200
    • /
    • 2012
  • We investigated a flexible transparent film using the spinning multi-walled carbon nanotubes (MWCNTs). Spin-capable MWCNTs on iron catalyzed on a SiO2 wafer was grown by chemical vapor deposition, which was performed at $780^{\circ}C$ using C2H2 and H2 gas. The average diameter and length of MWCNTs grown on the substrate were ~15 nm and $250{\sim}300{\mu}m$, respectively. The MWCNT sheets were produced by continuously pulling out from well-aligned MWCNTs on a substrate. The MWCNT sheet films were produced simply by direct coating on the flexible film or grass. The thickness of sheet film was remarkably decreased by alcohol spraying on the surface of sheet. The alcohol splay increased transmittance and decreased electrical resistance of MWCNT sheet films. Single and double sheets were produced with sheet resistance of ~699 and ${\sim}349{\Omega}/sq$, respectively, transmittance of 81~85 % and 67~72%, respectively. The MWCNT sheet films were heated through the application of direct current power. The flexible transparent heaters showed a rapid thermal response and uniform distribution of temperature. In addition, MWCNT yarns were prepared by spinning a bundle of MWCNTs from vertically super-aligned MWCNTs on a substrate, and field emission from the tip and side of the yarns was induced in a scanning electron microscope. We found that the field emission behavior from the tip of the yarn was better than the field emission from the side. The field emission turn-on voltages from the tip and side of MWCNT yarns were 1.6 and $1.7V/{\mu}m$, respectively, after the yarn was subjected to an aging process. Both the configuration of the tip end and the body of the yarn were changed remarkably during the field emission. We also performed the field emission of the sheet films. The sheet films showed the turn on voltage of ${\sim}1.45V/{\mu}m$ during the field emission.

  • PDF

Absorption analysis of streptavidin-biotin complexes using AFM (AFM을 이용한 스트렙타비딘-바이오틴 단백질 복합체의 흡착 분석)

  • Park, Jee-Eun;Kim, Dong-Sun;Choi, Ho-Jin;Shin, Jang-Kyoo;Kim, Pan-Kyeom;Lim, Geun-Bae
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.237-244
    • /
    • 2006
  • Atomic force microscope (AFM) has become a common tool for the structural and physical studies of biological macromolecules, mainly because it provides the ability to perform experiments with samples in a buffer solution. In this study, structure of proteins and nucleic acids has been studied in their physiological environment that allows native intermolecular complexes to be formed. Cr and Au were deposited on p-Si (100) substrate by thermal evaporation method in sequence with the thickness of $200{\AA}$ and $500{\AA}$, respectively, since Au is adequate for immobilizing biomolecules by forming a self-assembled monolayer (SAM) with semiconductor-based biosensors. The SAM, streptavidin and biotin interacted each other with their specific binding energy and their adsorption was analyzed using the Bio-AFM both in a solution and under air environment. A silicon nitride tip was used as a contact tip of Bio-AFM measurement in a solution and an antimony doped silicon tip as a tapping tip under air environment. Actual morphology could also be obtained by 3-dimensional AFM images. The length and agglomerate size of biomolecules was measured in stages. Furthermore, $R_{a}$ (average of surface roughness) and $R_{ms}$ (mean square of surface roughness) and surface density for the adsorbed surface were also calculated from the AFM image.

Resistance Spot Weldability of Surface Roughness Textured Galvannealed Steel Sheets (표면조도처리 된 합금화 용융아연도금강판의 저항 점 용접성)

  • Park, Sang-Soon;Kim, Ki-Hong;Kang, Nam-Hyun;Kim, Young-Seok;Rhym, Young-Mok;Choi, Yung-Min;Park, Yeong-Do
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.8
    • /
    • pp.495-505
    • /
    • 2008
  • With the high proportion of zinc coated steels in body-in-white assembly, newly developed surface roughness textured galvannealed steel sheets have been introduced. In this study, zinc coated and surface roughness textured steel sheets were welded by resistance spot welding to investigate its weldability including electrode wear test. Based on the results of tensile-shear test, nugget diameter changes, and electrode tip growth test, it was clear that both surface roughness textured steels (GA-T and GA-E) showed good weldability. Also, there was no large difference in weldability and electrode wear behavior between GA-T and GA-E steels which have different surface roughness morphology. An analysis of electrode degradation showed Fe and Zn penetration through the electrode tip surface at 2400 welds reached $55{\sim}60{\mu}m$ and $75{\sim}80{\mu}m$, respectively. Therefore, there is no significant effect of surface roughness morphology on spot weldability of surface roughness textured galvannealed steel sheets. However, slight difference in thickness of alloying layers existing on electrode tip was found between GA-T and GA-E steels.

A Study on the Cutting Characteristics of Plate Steel using CNC Cutting Machine (CNC 절단기를 이용한 강판의 절단특성에 관한 연구(1))

  • 김성일;이중희;김태영
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.643-648
    • /
    • 2002
  • In the cutting of plate steel, the quality of the cut surfaces is strongly dependent on the cutting conditions such as cutting speed, kerf width, plate thickness, length of tip-specimen and oxygen pressure etc. the cutting tests of plate steel were carried out using CNC gas cutting machine. this paper deals with cutting characteristics of plate steel using CNC cutting machine. the width of cutting entrance and exit, the surface roughness of cutting surfaces and the cutting surface are examined at various cutting conditions.

  • PDF

A Study on the Cutting Characteristics of Plate Steel Under Various Cutting Conditions. (강판의 절단조건 변화에 따른 절단특성에 관한 연구)

  • Kim, In-Chul;Kim, Sung-Il;Ko, Heung;Kim, Seung-Gi
    • Proceedings of the KWS Conference
    • /
    • 2002.05a
    • /
    • pp.36-38
    • /
    • 2002
  • This paper is a study on the effect of the cutting speed, length of tip-specimen and cutting thickness in CNC gas cutting of the high-tensile steel plate(AH36). Experiments were performed to investigate the variations of cutting surface, surface roughness and kerf width under various cutting conditions.

  • PDF

A Study on the Cutting Phenomena in CNC Gas Cutting Under Various Cutting Conditions (고장력 강판의 CNC 가스 절단시 절단조건 변화에 따른 절단현상에 관한 연구)

  • 김성일
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.186-191
    • /
    • 2002
  • In the CNC gas cutting of steel plate, the cutting quality are strongly dependent on the various cutting conditions. The cutting tests of high tensile steel plate(AH36) were carried out using CNC gas cutting machine at various cutting conditions such as cutting speed, steel plate thickness, distance between tip and specimen etc. The kerf width and the surface roughness of cutting surfaces are examined. The photographs of cutting surface and cutting section are also analyzed.

  • PDF

Design and analysis fo wind turbine airfoils (풍력블레이드용 에어포일세트의 설계 및 해석)

  • Shin, Hyung-Ki;Kim, Seok-Woo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.362-365
    • /
    • 2007
  • In wind turbine blades, airfoils are required to have different spec when compared with airplane airfoil. Airfoils for wind turbine blade must have a high lift-to-drag ratio, moderate to high lift and especially low roughness sensitivity. Also an operation Re. No.s are lower than conventional airplane airfoils. At mid-span and inboard region, structural problems have to be considered. Especially, for stall regulated type, moderate stall behavior is essential part of design. For these reasons, airfoil design for HAWT blade is essential part of blade design. In this paper, root airfoil and tip airfoil are discussed. For a root region, 24% thickness airfoil is designed and for a top region, 12% thickness ratio is done. A inverse design method and panel method are used for rapid airfoil design. In this paper, a design method, features of airfoil shape and characteristics are discussed.

  • PDF

A Study on the Proper Fillet Shape in Fracture Mechanical Aspect (파괴역학적 관점에서의 적정 필렛 형상에 관한 연구)

  • Kim, Chul;Yang, Won-Ho;Cho, Myoung-Rae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.214-220
    • /
    • 1999
  • In order to use effectively a machinery part with fillet, it is necessary to determine a proper fillet shape in design step, Study of such problem by fracture mechanical criterion is rare. So, this paper focuses on the design of fillet radius in fracture mechanical aspect. Finite element method was used to obtain crack tip stress intensity factor. Stress intensity factor was calculated by COD(crack opening displacement0method proposed by Ingraffea and Manu. The parameter used in this study are thickness ration, filet radium and crack length . If fillet radius increase , crack propagation may be accelerated. Critical crack length is inversely proportional to fillet radius.

  • PDF

The Effect of the Diameter and Rotational Velocity on the Cavitation Performance of a Turbopump Inducer (터보펌프 인듀서의 흡입성능에 대한 직경과 회전속도의 영향)

  • Sohn, Dong-Kee;Koo, Hyun-Chul;Cha, Bong-Jun;Yang, Soo-Seok;Lee, Dae-Sung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.1 s.14
    • /
    • pp.27-32
    • /
    • 2002
  • The turbopump inducer cavitation is very important for the success of a liquid rocket engine. In this study, the performance test and cavitation performance test were carried out at various rotational speeds with two inducers of different diameter. The rotational speed was varied by 4000, 6000, and 8000 rpm, and the size effect was tested for the normal inducer and twice-enlarged one. The hydraulic performance results showed that the similarity was satisfied over the entire test range of the present study. The blade thickness effect was examined and showed that the increased blade thickness resulted in decreased efficiency and worse cavitation performance for the large tip clearance. The cavitation performance test results showed that the breakdown NPSH increased as the flow coefficient, and was not affected by the rotational speed.

The Effect of the Diameter and Rotational Velocity on the Cavitation Performance of a Turbopump Inducer (터보펌프 인듀서의 흡입성능에 대한 직경과 회전속도의 영향)

  • Sohn, Dong Kee;Koo, Hyun Chul;Cha, Bong Jun;Yang, Soo Seok;Lee, Dae Sung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.229-234
    • /
    • 2001
  • The turbopump inducer cavitation is very important for the success of a Liquid rocket engine. In this study the performance test and cavitation performance test were carried out at various rotational speed with two different diameter inducers. The rotational speed were varied 4000, 6000, 8000 rpm and the variation to the diameter of an inducer were taken as design size and 2 times enlarged size. The major results of the present study were as follows. 1. The hydraulic performance results showed that the similarity was met over the entire test range of the present study. 2. The blade thickness effect was examined and showed that the increased blade thickness resulted in decreased efficiency and worse cavitation performance for large tip clearance. 3. The cavitation performance test results showed that the breakdown NPSH increases as the flow coefficient and does not affected by the rotational speed.

  • PDF