• Title/Summary/Keyword: tip size

Search Result 613, Processing Time 0.023 seconds

Numerical Analysis of Tip Vortex Cavitation Behavior and Noise on Hydrofoil using Dissipation Vortex Model and Bubble Theory (소산이 고려된 보오텍스 모델과 버블 이론을 이용한 수중익 날개 끝 보오텍스 캐비테이션 거동 및 소음의 수치적 해석)

  • Park, Kwang-Kun;Seol, Han-Shin;Lee, Soo-Gab
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.2 s.146
    • /
    • pp.177-185
    • /
    • 2006
  • Cavitation is the dominant noise source of the marine vehicle. Of the various types of cavitation , tip vortex cavitation is the first appearance type of marine propeller cavitation and it generates high frequency noise. In this study, tip vortex cavitation behavior and noise are numerically investigated. A numerical scheme using Eulerian flow field computation and Lagrangian particle trace approach is applied to simulate the tip vortex cavitation on the hydrofoil. Vortex flow field is simulated by combined Moore and Saffman's vortex core radius equation and Sculley vortex model. Tip vortex cavitation behavior is analyzed by coupled Rayleigh-Plesset equation and trajectory equation. The cavitation nuclei are distributed and released in the vortex flow result. Vortex cavitation trajectories and radius variations are computed according to nuclei initial size. Noise is analyzed using time dependent cavitation bubble position and radius data. This study may lay the foundation for future work on vortex cavitation study and it will provide a basis for proper underwater propeller noise control strategies.

Effect of Shockwave on Diesel Spray Characteristics in Ultra High Pressure Injection (극초고압 디젤분무의 충격파가 디젤분무특성에 미치는 영향)

  • Jeong, Dae-Yong;Lee, Jong-Tai
    • Journal of ILASS-Korea
    • /
    • v.10 no.1
    • /
    • pp.10-16
    • /
    • 2005
  • To investigate the effect of shockwave on diesel spray characteristics under ultra high pressure injection, the velocity of spray tip and shock wave were investigated using the visualization of spray by schlieren method. Spray characteristics such as the spray radius, height, and droplets size were analyzed. It is found in this study that shock wave, produced by ultra high injection pressure, propagates faster than spray tip. Spray radius of right side of nozzle tip was shorter than that of left side and spray height of right side of nozzle tip was thicker than that of left side. Droplets sue was increased at 414MPa in injection pressure because of pressure gradient between inner and outer of tile spray caused by shockwave.

  • PDF

Formation of Switching Zones in an AFM Tip/Ferroelectric Thin Film/BE System (AFM팁/강유전박막/전극 시스템에서의 스위칭 영역의 형성)

  • Kim, Sang-Joo;Shin, Joon-Ho;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.849-856
    • /
    • 2003
  • A three-dimensional constitutive model for polarization switching in ferroelectric materials is used to predict the formation of switching zones in an atomic force microscopy(AFM) tip/ferroelectric thin film/bottom electrode system via finite element simulation. Initially the ferrolectric film is poled upward and the bottom electrode is grounded. A strong dc field is imposed on a fixed point of the top surface of the film through the AFM tip. A small switching zone with downward polarization is nucleated and grows with time. It is found that initially the shape of the switched zone is that of a bulgy dagger, but later turn to the shape of a reversed cup with the lower part wider than the upper part. It can also be concluded that the size of switching zones increases with the period of applied electric potential. The present results are qualitatively consistent with experimental observations.

Fault Detection Method of Pipe-type Cantilever Beam with a Tip Mass (말단질량을 갖는 원형강관 캔틸레버 보의 결함탐지기법)

  • Lee, Jong Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.11
    • /
    • pp.764-770
    • /
    • 2015
  • A crack identification method using an equivalent bending stiffness and natural frequency for cracked beam is presented. Modal properties of cantilever beam with a tip mass is identified by applying the boundary conditions to a general solution. An equivalent bending stiffness for cracked beam based on an energy method is used to identify natural frequencies of cantilever thin-walled pipe with a tip mass, which has a through-the-thickness crack, subjected to bending. The identified natural frequencies of the cracked beam are used in constructing training patterns of neural networks. Then crack location and size are identified using a committee of the neural networks. Crack detection was carried out for an example beam using the proposed method, and the identified crack locations and sizes agree reasonably well with the exact values.

A Study on Parameters Affected the Fatigue Crack Growth in Steel Structure Members( II ) -The Effect of Surface Residual Stress for Crack Closure- (강구조 부재의 피로균열성장에 미치는 제인자에 관한 연구( II ) -표면잔류응력이 균열닫힘에 미치는 영향-)

  • Choi, Young Jae;Kyung, Kab Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.3 s.28
    • /
    • pp.3-11
    • /
    • 1996
  • To investigate the effect of fatigue crack growth due to the surface residual stress, it is measured the residual stress distribution by x-ray diffraction at the crack tip each constant crack growth in the notch specimens, and quantitively assessed the effect of crack closure caused to the distribution of compressive stress at the crack tip from evaluating crack openning stress using the finite element analysis. It is concluded that the degree of the residual stress distribution at the crack tip is decreased with increasing the crack length. From the fact that it is similar to the crack openning stress ratio, it is found that the compressive residual stress distribution and size is related to the crack closure effect and surface residual stress field with propagating crack in the notch specimens depends on the stress intensity factor range at the crack tip.

  • PDF

On a Method for the Durability Enhancement of Plastic Spur Gear Using Finite Element Analysis (유한요소해석에 의한 플라스틱 스퍼기어의 내구성 향상방안 연구)

  • Kim, Choong-Hyun;Ahn, Hyo-Sok;Chong, Tae-Hyong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.223-230
    • /
    • 2003
  • Stress patterns are created in the plastic spur gear tooth body by introducing a hole or a steel pin to improve stress distribution. Static analysis using finite element method is carried out to show the effect. The result shows that maximum stress as well as tooth tip displacement is dependent on the size and location of a hole or a steel pin. When a hole located on the tooth center line, the maximum static stress level and the tooth tip deflection is always higher than that of a solid gear. But, a considerable reduction in the maximum stress and tooth tip displacement is achieved by insertion of steel pin.

A Numerical Study on the Bubble Noise and the Tip Vortex Cavitation Inception

  • Park, Jin-Keun;Georges L. Chahine
    • Journal of Ship and Ocean Technology
    • /
    • v.7 no.3
    • /
    • pp.13-33
    • /
    • 2003
  • This paper presents a numerical study on tip vortex cavitation inception predictions based on non-spherical bubble dynamics including splitting and jet noise emission. A brief summary of the numerical method and its validation against a laboratory experiment are presented. The behavior of bubble nuclei is studied in a tip vortex flow field at two Reynolds numbers, provided by a viscous flow solver. The bubble behavior is simulated by an axisymmetric potential flow solver with the effect of surrounding viscous flow taken into account using one way coupling. The effects of bubble nucleus size and Reynolds number are studied. An effort to model the bubble splitting at lower cavitation numbers is also described.

Reconstruction of cutaneous defects of the nasal tip and alar by two different methods

  • Kim, Yong Hun;Yoon, Hyung Woo;Chung, Seum;Chung, Yoon Kyu
    • Archives of Craniofacial Surgery
    • /
    • v.19 no.4
    • /
    • pp.260-263
    • /
    • 2018
  • Background: The alar and nasal tip are important subunits of the nose. Determining the optimal procedure for reconstructing a cutaneous defect in a nasal subunit depends on several factors including size, location, and involvement of deep underlying structures. We treated cutaneous defects after tumor ablation in the alar and nasal tip with a local flap, using an S-shaped design and a modified V-Y advancement flap with a croissant shape. Methods: We analyzed 36 patients with skin tumors who underwent flap coverage after tumor ablation. Rotation flaps were used in 26 cases and croissant-shaped V-Y advancement flaps were used in 10 cases. The primary cause of the defects was skin cancer, except for one benign tumor. Results: The mean patient age was 71 years. The size of the defects ranged from $0.49cm^2$ to $3.5cm^2$. No recurrence of skin cancer was noted and all flaps lasted until the end of follow-up. Partial desquamation of the epidermis was noted in one case. The postoperative appearance for most patients was excellent, objectively and subjectively. Conclusion: For cutaneous defects of up to about $4.0cm^2$ of the alar and nasal tip, local flaps using our methods offered a good cosmetic and therapeutic result. The main advantage of our flaps is the minimal dissection required compared to bilobed and other local flap methods. We believe our flaps are a suitable option for alar and nasal tip reconstruction.

Spray Characteristics of a Movable Pintle Injector with Pintle Tip Shape (가변 핀틀 인젝터에서 핀틀 팁 형상에 따른 분무특성 연구)

  • Nam, Jeongsoo;Lee, Keonwoong;Park, Sunjung;Huh, Hwanil;Koo, Jaye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.9
    • /
    • pp.658-664
    • /
    • 2019
  • In the development of the liquid rocket engine using the pintle injector, spray characteristics such as spray angle, droplet size, and distribution of the droplets are dominant parameters. Three different kind of multi hole type pintle tip and a continuous type pintle tip were designed. In the case of multi hole pintle tip, SMD result did not have a significant difference depending on the number of holes. In analysis with visualization images, however, the droplets were uniformly distributed as the number of holes increased. Liquid droplets from continuous type pintle tip were finely atomized and dispersed uniformly than those from multi-hole type pintle tip. In addition, the thrust control by adjusting the liquid injection area of the pintle is suitable for the continuous type, which is easier to face-shutoff rather than the multi hole type. The spray angle of each pintle tip according to TMR was measured to derive a specific tendency and corresponding empirical formula.

A Study on Plastic Zone at the Crack Tip under Cyclic Loading by FEM (유한요소법을 이용한 피로하중을 받는 균열선단의 소성영역크기에 대한 연구)

  • Kim, Kyung-Su;Shim, Chun-Sik;Lee, Wook-Jae;Cho, Hyung-Min
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.151-154
    • /
    • 2002
  • In this paper, the effect of the crack growth length on the plastic zone size at the crack tip and the crack growth lives of the DENT specimen under constant amplitude cyclic loading were studied. The plastic zone size was calculated by nonlinear static method in commercial finite element analysis program, MSC/NASTRAN and the crack growth lives were also calculated by using compliance function considering geometric shape in MSC/FATIGUE. The calculated plastic zone size increased proportional to the crack length. And comparison of calculated plastic zone size and crack growth lives with the experimental results shows a good agreement.

  • PDF