• Title/Summary/Keyword: tip position

Search Result 372, Processing Time 0.023 seconds

Tip position control of translational 1-link flexible arm with tip mass (Tip mass를 갖는 병진운동 1-링크 탄성암 선단의 위치제어)

  • 이영춘;방두열;이성철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1036-1041
    • /
    • 1993
  • The tip of the flexible robot arm has to be controlled by the active control reducing vibration because it has residual vibration after getting to desired position. This paper presents an end-point position control of a 1-link flexible robot arm having tip mass by the PID control algorithm. The system is composed of a flexible arm with tip mass, dc servomotor and ballscrew mechanism under translational motion. The feedback signal composed of the tip displacement measured by laser sensor, estimated velocity and acceleration is used to control the base motion. Theoretical results are obtained by applying the Laplace transform and the numerical inversion method to the governing equations. After the flexible robot arm reaches to. the desired position, the residual vibration is controlled by the PID algorithm. This paper gives the simulation and experimental results of end-point responses according to changing tip-mass and arm length. And this algorithm shows good effects of reducing the residual vibration. Approximately, theoretical response is in good agreement with experimental one.

  • PDF

Effect of Vane/Blade Relative Position on Heat/Mass Transfer Characteristics on the Tip and Shroud for Stationary Turbine Blade (고정된 터빈 블레이드의 베인에 대한 상대위치 변화가 끝단면 및 슈라우드의 열/물질전달 특성에 미치는 영향)

  • Rhee Dong-Ho;Cho Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.5 s.248
    • /
    • pp.446-456
    • /
    • 2006
  • The effect of relative position of the stationary turbine blade for the fixed vane has been investigated on blade tip and shroud heat transfer. The local mass transfer coefficients were measured on the tip and shroud fur the blade fixed at six different positions within a pitch. A low speed stationary annular cascade with a single turbine stage was used. The chord length of the tested blade is 150 mm and the mean tip clearance of the blade having flat tip is 2.5% of the blade chord. A naphthalene sublimation technique was used for the detailed mass transfer measurements on the tip and the shroud. The inlet flow Reynolds number based on chord length and incoming flow velocity is fixed to $1.5{\times}10^5$. The results show that the incoming flow condition and heat transfer characteristics significantly change when the relative position of the blade changes. On the tip, the size of high heat/mass transfer region along the pressure side varies in the axial direction and the difference of heat transfer coefficient is up to 40% in the upstream region of the tip because the position of flow reattachment changes. On shroud, the effect of tip leakage vortex on the shroud as well as tip gap entering flow changes as the blade position changes. Thus, significantly different heat transfer patterns are observed with various blade positions and the periodic variation of heat transfer is expected with the blade rotation.

Tip Position Control of a Flexible Cantilever Based on Kalman Estimation Using an Accelerometer (가속도계를 이용한 칼만 추정 기반의 유연 외팔보의 종단 제어)

  • Kim, Gook-Hwan;Lee, Soon-Geul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.591-598
    • /
    • 2011
  • Tip position control of a flexible cantilever is difficult due to the non-minimum phase dynamics that result from the finite propagating speed of a mechanical wave along the cantilever. In this paper, we propose a method for the tip position control using a light and cheap accelerometer that does not bring any significant change to the dynamics of the cantilever system. The linear system identification model of the flexible cantilever is obtained with measurements by a laser displacement sensor. A Kalman estimator is designed with this model and calculates the estimated tip position with the acceleration data of the accelerometer that is attached on the tip of the cantilever. To verify reliability of the estimator, the estimated tip position is used to the feedback control system that uses a fuzzy logic controller. The control results are compared with those of the fuzzy control system where the real tip position is measured by a laser displacement sensor. Also, the performance of the estimator with the accelerometer is presented and discussed.

Effect of needle tip design and position, and irrigant flow rate on apical pressure (주사침 말단의 형상과 위치, 세척액 주입속도가 치근단에 작용하는 압력에 미치는 영향)

  • Lee, Chang-Ha;Jo, Seol-Ah;Lim, Bum-Soon;Lee, In-Bog
    • Korean Journal of Dental Materials
    • /
    • v.45 no.4
    • /
    • pp.275-286
    • /
    • 2018
  • The purpose of this study was to evaluate the effect of needle tip design and position, and irrigant flow rate on apical pressure (AP) during root canal irrigation. Five human mandibular premolars were instrumented up to #35 (0.06 taper) using nickel-titanium rotary instruments. Three different needles according to change of needle tip design (notched, side-vented, and flat) were positioned at the point of 1, 3, and 5 mm from the apical constriction (needle tip position). For each needle tip design and position, APs were measured with varying flow rates of 0.05, 0.1, 0.2, and 0.3 ml/s. When the other conditions were controlled, AP increased with decreasing needle tip position or increasing irrigant flow rate (p<0.05). The AP of flat needle was the highest, followed by notched, side-vented needle for the same needle tip position and irrigant flow rate. The APs at needle tip position of 1 mm or with more than 0.1 ml/s flow rate were higher than central venous pressure (5.88 mmHg) for all conditions. Flat needle was not recommended for clinical use due to sharp increase of AP with changing needle tip position and irrigant flow rate. For safe and effective root canal irrigation, irrigant should be applied with the needle tip position of 3 mm and flow rate of less than 0.05 ml/s.

Tip Leakage Flow on the Transonic Compressor Rotor (천음속 회전익에서의 누설유동)

  • Park, JunYoung;Chung, HeeTaeg;Baek, JeHyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.244-249
    • /
    • 2002
  • It is known that tip clearance flows reduce the pressure rin, flow range and efficiency of the turbomachinery. So, the clear understanding about flow fields in the tip region is needed to efficiently design the turbomachinery. The Navier-Stokes code with the proper treatment of the boundary conditions has been developed to analyze the three-dimensional steady viscous flow fields in the transonic rotating blades and a numerical study has been conducted to investigate the detail flow physics in the tip region of transonic rotor, NASA Rotor 67. The computational results in the tip region of transonic rotors show the leakage vortices, leakage flow from pressure side to suction side and their interaction with a shock Depending on the operating conditions, the position of shock-wave on the blade surface are v8y different close to the blade tip of the transonic compressor rotor. The shock-wave position dose to the blade tip had the dose relationship with the starting position of leakage vortex and the direction of leakage flow.

  • PDF

The effect of needle tip position on the analgesic efficacy of pulsed radiofrequency treatment in patients with chronic lumbar radicular pain: a retrospective observational study

  • Kim, Won-Joong;Park, Hahck Soo;Park, Min Ki
    • The Korean Journal of Pain
    • /
    • v.32 no.4
    • /
    • pp.280-285
    • /
    • 2019
  • Background: Pulsed radiofrequency (PRF) is a treatment modality that alleviates radicular pain by intermittently applying high-frequency currents adjacent to the dorsal root ganglion. There has been no comparative study on analgesic effect according to the position of the needle tip in PRF treatment. The objective of this study is to evaluate the clinical outcomes of PRF according to the needle tip position. Methods: Patients were classified into 2 groups (group IP [group inside of pedicle] and group OP [group outside of pedicle]) based on needle tip position in the anteroposterior view of fluoroscopy. In the anteroposterior view, the needle tip was advanced medially further than the lateral aspect of the corresponding pedicle in group IP; however, in group OP, the needle tip was not advanced. The treatment outcomes and pain scores were evaluated at 4, 8, and 12 weeks after applying PRF. Results: At 4, 8, and 12 weeks, there were no significant differences between the successful response rate and numerical rating scale score ratio. Conclusions: The analgesic efficacy of PRF treatment did not differ with the needle tip position.

The Image Distortion Analysis of Levin-tube tip by Patient position and Incidence Angle when taking Mobile Chest AP Projection (Mobile Chest AP 검사 시 환자자세와 입사각도에 따른 Levin-tube tip의 영상왜곡 분석)

  • Lee, Jinsoo;Park, Hyonghu
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.7
    • /
    • pp.467-471
    • /
    • 2015
  • This study's purpose is improve image quality to keep accurate tube angle in order to recognize distortion degree conditions by patient's position or tube angle and to provide exact clinical informations when taking chest AP projection for patient which have L-tube in stomach. The experimental equipment was ELMO-T6S by SHIMADZU corporation, then we put L-tube which attached 1 mm gap scales ruler on chest phantom surface. The experiment set by 90 kVp, 4 mAs, 120 cm distance. Each phantom position which changed supine, 30degree, 45degree, 60degree on the table exposured direct, ${\pm}5degree$, ${\pm}10degree$, ${\pm}15degree$ to head and feet directions. As a result, L-tube tip's position was changed by patient's position and tube angle. When patient's position is supine, tip's position change was lower than 30degree, 45degree, 60degree. We have to adjust patient's position or tube angle in order to occur image distortion by fault tube angle when confirming correct position L-tube tip through chest x-ray. Also, Radiological technologist try to make accurate evaluation index for satisfied L-tube insertion.

Shaping of piezoelectric polyvinylidene fluoride polymer film for tip position sensing of a cantilever beam

  • Lee, Young-Sup
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.225-230
    • /
    • 2005
  • This paper describes a novel tip position sensor made of a triangularly shaped piezoelectric PVDF (polyvinylidene fluoride) film for a cantilever beam. Due to the boundary condition of the cantilever beam and the spatial sensitivity function of the sensor, the charge output of the sensor is proportional to the tip position of the beam. Experimental results with the PVDF sensor were compared with those using two commercially available position sensors: an inductive sensor and an accelerometer. The resonance frequencies of the test beam, measured using the PVDF sensor, matched well with those measured with the two commercial sensors and the PVDF sensor also showed good coherence over wide frequency range, whereas the inductive sensor became poor above a certain frequency.

자기동조 퍼지 알고리즘에 의한 탄성 로보트 Arm 선단의 위치제어

  • 양길태;안상도;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04a
    • /
    • pp.213-217
    • /
    • 1993
  • This paper presents an end-point of 1-link flexible robot arm with a tip-mass by using self-turning fuzzy algorithm. The arm is mounted on a translational mechanism driven by a ballscrew, whose rotation is controlled by CD servomotor. Tip position is controlled so that it follows a desired position. A feedback signal is composed of both the tip-displacement error and change in error. This paper gives the experimental tip responses according to the variations of tip-mass and beam-length, and also showes the effects of reducing the residual vibrations occuring at the end-point.

Fuzzy Algorithm에 의한 1-링크 탄성 로보트 Arm 선단의 위치제어

  • 양길태;이영춘;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.149-153
    • /
    • 2001
  • This paper presents an end-point control of 1-link flexible arm tip-mass by using fuzzy position control algorithm. The arm is mounted on a translational mechanism driven by a ballscrew, whose rotation is controlled by a DC servomotor. Tip position is controlled so that it follows a desired position. Feedback signal is composed of both tip displacement error and change of error. This paper gives tip responses according to the variations of tip-mass and beam length, and the effects of reducing the residual vibrations occurring at the end-point. In the case of the residual vibrations of tip displacement, fuzzy control has better results than the PD-control.