• Title/Summary/Keyword: tin chloride solution

Search Result 25, Processing Time 0.026 seconds

Preparation of Nano-Sized Tin Oxide Powder from Tin Chloride Solution by Spray Pyrolysis Process

  • Yu, Jae-Keun;Kim, Dong-Hee
    • Korean Journal of Materials Research
    • /
    • v.21 no.7
    • /
    • pp.396-402
    • /
    • 2011
  • In this study, by using tin chloride solution as a raw material, a nano-sized tin oxide powder with an average particle size below 50 nm is generated by a spray pyrolysis process. The properties of the generated tin oxide powder depending on the inflow speed of the raw material solution are examined. When the inflow speed of the raw material solution is 2 ml/min, the majority of generated particles appear in the shape of independent polygons with average size above 80-100 nm, while droplet-shaped particles show an average size of approximately 30 nm. When the inflow speed is increased to 5 ml/min, the ratio of independent particles decreases, and the average particle size is approximately 80-100 nm. When the inflow speed is increased to 20 ml/min, the ratio of droplet-shaped particles increases, whereas the ratio of independent particles with average size of 80-100 nm decreases. When the inflow speed is increased to 100 ml/min, the average size of the generated particles is around 30-40 nm, and most of them maintain a droplet shape. With a rise of inflow speed from 2 ml/min to 5 ml/min, a slight increase of the XRD peak intensity and a minor decrease of specific surface area are observed. When the inflow speed is increased to 20 ml/min, the XRD peak intensity falls dramatically, although a significant rise of specific surface area is observed. When the inflow speed is increased to 100 ml/min, the XRD peak intensity further decreases, while the specific surface area increases.

Cementation of Tin by Aluminium from Hydrochloric acid Solution (염산산성(鹽酸酸性) 용액(溶液)중에서 알루미늄에 의한 주석(朱錫)의 치환반응(置換反應))

  • Ahn, Jae-Woo;So, Sun-Seob
    • Resources Recycling
    • /
    • v.17 no.2
    • /
    • pp.70-75
    • /
    • 2008
  • A study on the cementation for the recovery of tin with aluminium in the hydrochloric acid solution was carried out. Parameters, such as aluminium metal equivalent, pH, reaction time, reaction temperature and the concentration of chloride ions were investigated. The experimental results showed that the cementation rate of Sn(II) ions increased with increase of the addition amount of aluminium powders, temperature, pH and the concentration of chloride ions in hydrochloric acid solution. From the results, the optinum conditions for recovery of metallic tin by cementation with aluminium metal powders were proposed.

Infleunce of Nozzle Tip Size on the Preparation of Nano-Sized Tin Oxide Powder by Spray Pyrolysis Process

  • Yu, Jaekeun;Kim, Donghee
    • Korean Journal of Materials Research
    • /
    • v.23 no.2
    • /
    • pp.81-88
    • /
    • 2013
  • In this study, using a tin chloride solution as the raw material, a nano-sized tin oxide powder with an average particle size below 50 nm is generated by a spray pyrolysis process. The properties of the tin oxide powder according to the nozzle tip size are examined. Along with an increase in the nozzle tip size from 1 mm to 5 mm, the generated particles that appear in the shape of droplets maintain an average particle size of 30 nm. When the nozzle tip size increases from 1 mm to 2 mm, the average size of the generated particles is around 80-100 nm, and the ratio of the independent particles with a compact surface structure increases significantly. When the nozzle tip size is at 3 mm, the majority of the generated particles maintain the droplet shape, the average size of the droplet-shaped particles increases remarkably compared to the cases of other nozzle tip sizes, and the particle size distribution also becomes extremely irregular. When the nozzle tip size is at 5 mm, the ratio of droplet-shaped particles decreases significantly and most of the generated particles are independent ones with incompact surface structures. Along with an increase in the nozzle tip size from 1 mm to 3 mm, the XRD peak intensity increases, whereas the specific surface area decreases greatly. When the nozzle tip size increases up to 5 mm, the XRD peak intensity decreases significantly, while the specific surface area increases remarkably.

Effect of PVP Molecular Weight on Size of Sn Nanoparticles Synthesized by Chemical Reduction (주석 나노 입자의 상온 환원 합성에서 PVP Capping Agent의 분자량에 따른 입도 변화)

  • Jang, Nam-Ie;Lee, Jong-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.4
    • /
    • pp.27-32
    • /
    • 2011
  • Tin nanoparticles were synthesized at room temperature by a compulsive reduction reaction using tin(II) acetate and tin(II) chloride precursors. When an identical amount (0.015 g) of polyvinyl pyrrolidone (PVP) was added, it was concluded that the probability of abnormally big particles forming increased with an increase in PVP molecular weight, resulting in the wide distribution of Sn nanoparticles. Differential scanning calorimetry measurements were carried out using diethylene glycol solution containing synthesized tin nanoparticles. When the population of specific particles with sizes below 35 nm was adequate, the melting point depression peaks of tin nanoparticles corresponding to the specific size were observed besides an evaporation endothermic peak of DEG during the first heating. Because DEG was evaporated and tin nanoparticles in contact became molten and coarsened during the first heating, a melting peak of bulk tin was only observed at $232^{\circ}C$ during the second heating.

Studies on the Natural Dyes(10) -Dyeing properties of safflower yellow for silk fibers- (天然染料에 관한 硏究(10) -홍화 황색소의 견섬유에 대한 염색성-)

  • Cho, Kyung Rae
    • Textile Coloration and Finishing
    • /
    • v.9 no.5
    • /
    • pp.10-18
    • /
    • 1997
  • In order to study the properties of safflower yellow colors, thermodynamic parameters and dyeing properties on the silk in several dyeing conditions were investigated. The uv-visible spectra of safflower yellow colors in several solvents show hypsochromic shift with the polarity of solvent but bathochromic shift with increasing acidity of solution. The apparent diffusion coefficients and standard affinities of dyeing increased with the increase of dyeing temperature. The standard heat of dyeing(${\Delta}H^0$), entropy change(${\Delta}S^0$) and activation energy($E_{act}$) were calculated to be - 1.144kcal/mol, -7.498(5$0^{\circ}C$)~-3.804(9$0^{\circ}C$)cal/molㆍdeg and 0.123kcal/mol, respectively. The concentration of safflower yellow colors in the silk fiber increased with dyeing temperature, time, concentration of colors and acidity of initial dyebath. Silk fabrics were dyed bright yellow by pre-mordanting with tin chloride. Lightfastness of silk fabrics pre-mordanted by tin chloride was not excellent.

  • PDF

Electrowinning of Tin from Acidic Chloride Effluents by Cyclone type Electrolytic Cell (염산용액에서 사이클론형 전해방식에 의한 주석의 전해채취)

  • Cho, Yeon-Chul;Kang, Myeong-Sik;So, Hong-Il;Lee, Joo-Eun;Ahn, Jae-Woo
    • Resources Recycling
    • /
    • v.26 no.3
    • /
    • pp.61-68
    • /
    • 2017
  • Cyclone electrowinning method was used to recover tin to metal in hydrochloric acid solution. The effects of flow rate, current density, tin concentration, and hydrochloric acid concentration on the electrowinning of tin were investigated. As the flow rate increased and the concentration of tin and hydrochloric acid decreased, the tin recovery and current efficiency increased. As the current density increased, the recovery rate increased but the current efficiency decreased. Tin can be effectively recovered at flow rates of 18 L/min., $3A/dm^2$, 2.5 g/L Sn, and 5 wt.% HCl.

Preparation of Nano-Sized Tin Oxide Powder by Spray Pyrolysis Process (분무열분해(噴霧熱分解) 공정(工程)에 의한 주석(朱錫) 산화물(酸化物) 나노 분말(粉末) 제조(製造))

  • Yu, Jae-Keun;Cha, Kwang-Yong;Kim, Myung-Choun;Han, Joung-Su;Jang, Jae-Bum;Lee, Yong-Hwa;Kim, Dong-Hee
    • Resources Recycling
    • /
    • v.17 no.6
    • /
    • pp.79-88
    • /
    • 2008
  • This study is the previous stage for the mass production technology development of the nano-sized tin oxide powder by the recycling of the wasted tin metal, and nano-sized tin oxide powder with the average particle size below 50 nm is prepared from the tin chloride solution by the spray pyrolysis process. As the reaction temperature increases from 800 to 850, the average particle size of the generated powder increases from 20 to 30 nm. As the reaction temperature increases to 900, the droplet type is composed of the particles with the average size of the 30 nm. while the average size of the independent particles increases up to $80{\sim}100$ nm and the surface microstructure becomes more solid. Until $900^{\circ}C$, as the reaction temperature increases, the XRD peak intensity increases, while the specific surface area decreases. When the reaction temperature increases to 950, most of the powder appears with the independent type and the average particle size decrease down to 70 nm. The XRD peak intensity greatly decreases and the specific surface area increases almost twice.

Solvent Extraction of Sn(IV) from Hydrochloric Acid Solution by Alamine 336 (염산용액에서 Alamine 336에 의한 주석(IV)의 용매추출)

  • Ahn, Jae-Woo;Seo, Jae-Seong;Lee, Man-Seung
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.10
    • /
    • pp.929-935
    • /
    • 2010
  • The solvent extraction behavior of Sn(IV) from hydrochloric acid was investigated using Alamine336 (Tri-n-cotylamine) as an extractant. The experimental parameters of the concentration of the HCl solution, chloride ions, extractant, and Sn(IV) were assessed. The results showed that the extraction percentage of Sn(IV) was more than 95% in our experimental range and was only slightly affected by the HCl concentration. The extraction reaction of Sn(IV) by Alamine 336 from the chloride solution was identified as follows: $SnCl_6{^{2-}}+2R_3NHCl_{(org)}=(R_3NH)_2SnCl_{6(org)}+2Cl^-$ and $K=6.3{\times}10^4$. Stripping experiments of Sn(IV) from the loaded organic phase were done by using several stripping agents. A stripping percentage of 90% was obtained with a 2.0 M NaOH solution.

Studies on the Natural Dyes(11) -Dyeing Properties of Cochineal Colors for Wool Fibers- (천연염료에 관한 연구(11) -코치닐 색소의 양모섬유 염색성-)

  • 조경래
    • Textile Coloration and Finishing
    • /
    • v.11 no.4
    • /
    • pp.39-49
    • /
    • 1999
  • In order to study the properties of cochineal colors, uv-visible spectra of cochineal colors solution, dyeing properties on the wool in several dyeing conditions and thermodynamic parameters were investigated. UV-visible spectra of cochineal colors solution showed hypochromic effect with the lapse of irradiation time but bathochromic shift with decreasing acidity of solution and addition of metallic ions. The concentration of cochineal colors in wool fiber increased with the increase of dyeing temperature, time, and acidity of initial dyebath. The value of apparent diffusion coefficients and standard affinities of dyeing decreased with the increase of dyeing temperature. The standard heats of dyeing$(\Delta{H}^\circ)$ and variation of entropy$(\Delta{S}^\circ)$ increased with the increase of concentration of initial dyebath. The activation energy$(E_a)$ were calculated to be 1.399~2.595kcal/mol in condition of 6~1%(o.w.f) dyebath. Wool fabrics were dyed reddish blue by iron sulfate, copper sulfate, aluminum acetate and tannic acid, and red by tin chloride, respectively. Lightfastness of wool fabrics dyed by cochineal colors were increased by mordant treatment, especially copper sulfate and iron sulfate treatment.

  • PDF

Preparation of Nano Sized Indium Tin Oxide (ITO) Powder with Average Particle Size Below 30 nm from Waste ITO Target by Spray Pyrolysis Process (폐 ITO 타겟으로부터 분무열분해 공정에 의한 평균입도 30 nm 이하의 인듐-주석 산화물 분체 제조)

  • Kim, Donghee;Yu, Jaekeun
    • Resources Recycling
    • /
    • v.27 no.2
    • /
    • pp.24-31
    • /
    • 2018
  • In this study, waste ITO target is dissolved into hydrochloric acid to generate a complex indium-tin chloride solution. Nano sized ITO powder with an average particle size below 30 nm are generated from these raw material solutions by spray pyrolysis process. Also, in this study, thermodynamic equations for the formation of indium-tin oxide (ITO) are established. As the reaction temperature increased from $800^{\circ}C$ to $900^{\circ}C$, the proportion and size of the spherical droplet shape in which nano sized particles aggregated gradually decreased, and the surface structure gradually became densified. When the reaction temperature was $800^{\circ}C$, the average particle size of the generated powder was about 20 nm, and no significant sintering was observed. At a reaction temperature of $900^{\circ}C$, the split of the droplet was more severe than at $800^{\circ}C$, and the rate of maintenance of the initial atomized droplet shape decreased sharply. The average particle size of the powder formed was about 25 nm. The ITO particles were composed of single solid crystals, regardless of reaction temperature. XRD analysis showed that only the ITO phase was formed. Remarkably, the specific surface area decreased by about 30% as the reaction temperature increased from $800^{\circ}C$ to $900^{\circ}C$.