• 제목/요약/키워드: timing receiver

검색결과 244건 처리시간 0.027초

버스트 QPSK 수신기의 동기 알고리즘 설계 (Design of Synchronization Algorithms for Burst QPSK Receiver)

  • 남옥우;김재형
    • 한국정보통신학회논문지
    • /
    • 제5권7호
    • /
    • pp.1219-1225
    • /
    • 2001
  • 본 논문에서는 BWLL 상향링크에 적용할 수 있는 버스트 QPSK 수신기의 동기알고리즘을 설계하였다. 본 논문에서 설계한 버스트 수신기는 디지털 다운컨버터와 정합필터 그리고 동기회로로 구성되어 있다. 동기회로의 경우 심벌 타이밍 복구를 위하여 가드너 알고리즘을 사용하였고 반송파 주파수 복구를 위하여 4승법을 사용하였으며 반송파 위상 복구는 DD알고리즘을 사용하였다. 성능 분석을 위하여 제안된 알고리즘에 대한 시뮬레이션 결과와 VHDL로 코딩되어 FPGA에 구현된 실제회로의 결과를 비교, 분석하였다. 성능분석 결과 주파수 옵셋이 심벌율의 4.7% 까지 동기기가 잘 동작하였다.

  • PDF

접근관제구역에서 다변측정감시시스템을 이용한 대안항법 방안 연구 (Alternative Positioning, Navigation and Timing Using Multilateration in a Terminal Control Area)

  • 조상훈;강자영
    • 한국항공운항학회지
    • /
    • 제23권3호
    • /
    • pp.35-41
    • /
    • 2015
  • Multilateration(MLAT) is commonly used in civil and military surveillance applications to accurately locate an aircraft, vehicle or stationary emitter. MLAT calculates the TDOA of signals by transmitted aircraft and determines the aircraft's location. With more than four receivers it is possible to estimate the 3D position of the aircraft by calculating the intersection of the resulting hyperbolas and the system integrity. In this study, our objectives are to apply MLAT technique to Jeju terminal control area and to propose a MLAT receiver network to properly estimate the positions of aircraft approaching this area. Based on computer simulations, we determine locations of ground receivers in Jeju terminal control area, calculate estimated position errors of the aircraft with respect to the selected receiver networks, and find the best receiver network with the least position error.

A Satellite Navigation Signal Scheme Using Zadoff-Chu Sequence for Reducing the Signal Acquisition Space

  • Park, Dae-Soon;Kim, Jeong-Been;Lee, Je-Won;Kim, Kap-Jin;Song, Kiwon;Ahn, Jae Min
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제2권1호
    • /
    • pp.1-8
    • /
    • 2013
  • A signal system for improving the code acquisition complexity of Global Navigation Satellite System (GNSS) receiver is proposed and the receiving correlator scheme is presented accordingly. The proposed signal system is a hierarchical code type with a duplexing configuration which consists of the Zadoff-Chu (ZC) code having a good auto-correlation characteristic and the Pseudo Random Noise (PRN) code for distinguishing satellites. The receiving correlator has the scheme that consists of the primary correlator for the ZC code and the secondary correlator which uses the PRN code for the primary correlation results. The simulation results of code acquisition using the receiving correlator of the proposed signal system show that the proposed signal scheme improves the complexity of GNSS receiver and has the code acquisition performance comparable to the existing GNSS signal system using Coarse/Acquisition (C/A) code.

Ultra-Fast L2-CL Code Acquisition for a Dual Band GPS Receiver

  • Kim, Binhee;Kong, Seung-Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제4권4호
    • /
    • pp.151-160
    • /
    • 2015
  • GPS L2C signal is a recently added civil signal to L2 frequency and is constructed by time division multiplexing of civil moderate (L2-CM) and civil long (L2-CL) code signals. While the L2-CM code is 20 ms-periodic and modulates satellite navigation message, the L2-CL code is 1.5s-periodic with 767,250 chips long code sequence and carries no data. Therefore, the L2-CL code signal allows receivers to perform a very long coherent integration. However, due to the length of the L2-CL code, the acquisition of the L2-CL code signal may take too long or require too much hardware resources. In this paper, we propose a three-step ultra-fast L2-CL code acquisition (TSCLA) technique for dual band GPS receivers. In the proposed TSCLA technique, a dual band GPS receiver sequentially acquires the coarse/acquisition (C/A) code signal at L1 frequency, the L2-CM code signal, and the L2-CL code signal to minimize mean acquisition time (MAT). The theoretical performance analysis and numerous Monte Carlo simulations show the significant advantage of the proposed TSCLA technique over conventional techniques introduced in the literature.

Carrier Phase Based Navigation Algorithm Design Using Carrier Phase Statistics in the Weak Signal Environment

  • Park, Sul Gee;Cho, Deuk Jae;Park, Chansik
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제1권1호
    • /
    • pp.7-14
    • /
    • 2012
  • Due to inaccurate safe navigation estimates, maritime accidents have been occurring consistently. In order to solve this, the precise positioning technology using carrier phase information is used, but due to high buildings near inland waterways or inclination, satellite signals might become weak or blocked for some time. Under this weak signal environment for some time, the GPS raw measurements become less accurate so that it is difficult to search and maintain the integer ambiguity of carrier phase. In this paper, a method to generate code and carrier phase measurements under this environment and maintain resilient navigation is proposed. In the weak signal environment, the position of the receiver is estimated using an inertial sensor, and with this information, the distance between the satellite and the receiver is calculated to generate code measurements using IGS product and model. And, the carrier phase measurements are generated based on the statistics for generating fractional phase. In order to verify the performance of the proposed method, the proposed method was compared for a fixed blocked time. It was confirmed that in case of a weak or blocked satellite signals for 1 to 5 minutes, the proposed method showed more improved results than the inertial navigation only, maintaining stable positioning accuracy within 1 m.

Positioning of Wireless Base Station using Location-Based RSRP Measurement

  • Cho, Seong Yun;Kang, Chang Ho
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제8권4호
    • /
    • pp.183-192
    • /
    • 2019
  • In fingerprint-based wireless positioning, it is necessary to establish a DB of the unmeasured area. To this end, a method of estimating the position of a base station based on a signal propagation model, and a method of estimating the information of the received signal in the unmeasured area based on the estimated position of the base station have been investigating. The purpose of this paper is to estimate the position of the base station using the measured information and to analyze the performance of the positioning. Vehicles equipped with a GPS receiver and signal measuring equipment travel the service area and acquire location-based Reference Signal Received Power (RSRP) measurements. We propose a method of estimating the position of the base station using the measured information. And the performance of the proposed method is analyzed on a simulation basis. The simulation results confirm that the accuracy of the positioning is affected by the measured area and the Dilution of Precision (DOP), the accuracy of the position information obtained by the GPS receiver, and the errors of the signal included in the RSRP. Based on the results of this paper, we can expect that the position of the base station can be estimated and the DB of the unmeasured area can be constructed based on the estimated position of the base stations and the signal propagation model.

A Precise Heave Determination System Using Time-Differenced GNSS Carrier Phase Measurements

  • Cho, MinGyou;Kang, In-Suk;Park, Chansik
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제6권4호
    • /
    • pp.149-157
    • /
    • 2017
  • In this study, a system that precisely determines the heave of ship hull was designed using time-differenced GNSS carrier phase measurement, and the performance was examined. First, a technique that calculates precise position relative to the original position based on TDCP measurement for point positioning using only one receiver was implemented. Second, to eliminate the long-cycle drift error occurring due to the measurement error that has not been completely removed by time-differencing, an easily implementable high-pass filter was designed, and the optimum coefficient was determined through an experiment. In a static experiment based on the precise heave measurement system implemented using low-cost commercial GNSS receiver and PC, the heave could be measured with a precision of 2 cm standard deviation. In addition, in a dynamic experiment where it moved up and down with an amplitude of 48 cm and a cycle of 20 seconds, precise heave without drift error could be determined. The system proposed in this study can be easily used for many applications, such as the altitude correction of fish detection radar.

Jammer Identification Technique based on a Template Matching Method

  • Jin, Mi Hyun;Yeo, Sang-Rae;Choi, Heon Ho;Park, Chansik;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제3권2호
    • /
    • pp.45-51
    • /
    • 2014
  • GNSS has the disadvantage of being vulnerable to jamming, and thus, the necessity of jamming countermeasure techniques has gradually increased. Jamming countermeasure techniques can be divided into an anti-jamming technique and a jammer localization technique. Depending on the type of a jammer, applicable techniques and performance vary significantly. Using an appropriate jamming countermeasure technique, the effect of jamming on a GNSS receiver can be attenuated, and prompt action is enabled when estimating the location of a jammer. However, if an inappropriate jamming countermeasure technique is used, a GNSS receiver may not operate in the worst case. Therefore, jammer identification is a technique that is essential for proper action. In this study, a technique that identifies a jammer based on template matching was proposed. For template matching, analysis of a received jamming signal is required; and the signal analysis was performed using a spectral correlation function. Based on a simulation, it was shown that the proposed identification of jamming signals was possible at various JNR.

Jammer Identification: Spectral Correlation Function and Wavelet Coherence

  • Jin, Mi Hyun;Choi, Yun Sub;Choi, Heon Ho;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제7권3호
    • /
    • pp.147-153
    • /
    • 2018
  • Jamming countermeasures are used to decrease or prevent the impact of intentional jamming applied to degrade the quality of information provided by a global navigation satellite system (GNSS) receiver. The maximum performance of jamming countermeasure can be obtained only when a proper technique is applied according to the type of jammer. This paper suggests a jamming identification technique for providing information regarding the type of jamming. The center frequency and bandwidth of jammer signal are inconsistent and may change according to time, and thus a spectral correlation function and wavelet coherence were considered in order to analyze the signal in the time and frequency space. Because the two characteristics derive different analysis results, two different identification techniques were suggested and the performances thereof were analyzed. Numerical results show that the two identification techniques have relative advantages and disadvantages as to time consumed and performance. The suggested methods can sufficiently identify the jammer before the GNSS receiver becomes inoperable because of jamming.

Pseudo Optical PAM-N Signal Using Externally Modulated Lasers

  • Huh, Joon Young;Lee, Joon Ki;Kang, Sae-Kyoung;Lee, Jyung Chan
    • ETRI Journal
    • /
    • 제37권6호
    • /
    • pp.1120-1128
    • /
    • 2015
  • We propose a pseudo optical N-level pulse-amplitude modulation (PO PAM-N) signal using a few externally-modulated lasers (EMLs) operating at different wavelengths, which is suitable for upgrading the transmission speed over an optical link of < 10 km single-mode fiber with low-cost components. To compare a PO PAM-N signal with that of a standard optical PAM-N signal, we perform experiments for evaluating the performance of a 51.56-Gb/s PO PAM-4 signal and standard 51.56-Gb/s optical PAM-4 signal. The receiver sensitivity (at $BER=10^{-5}$) of the PO PAM-4 signal is 1.5 dB better than the receiver sensitivity of a standard optical PAM-4 signal. We also investigate the feasibility of PO PAM-N (N = 4, 8, and 16) signals operating at 103.12 Gb/s, considering relative intensity noise, timing jitter, extinction ratio (ER) of EMLs, and dispersion. From the results, a PO PAM-8 signal performs better than PO PAM-4 and PO PAM-16 signals at 103.12 Gb/s. Finally, we suggest a timing control method to suppress the effect of dispersion in a PO PAM-N signal. We show that the tolerance to dispersion of a 103.12-Gb/s PO PAM-8 signal can be improved to ${\pm}40ps/nm$ by applying a proposed scheme.