• 제목/요약/키워드: timing receiver

검색결과 244건 처리시간 0.021초

A Joint Timing Synchronization, Channel Estimation, and SFD Detection for IR-UWB Systems

  • Kwon, Soonkoo;Lee, Seongjoo;Kim, Jaeseok
    • Journal of Communications and Networks
    • /
    • 제14권5호
    • /
    • pp.501-509
    • /
    • 2012
  • This paper proposes a joint timing synchronization, channel estimation, and data detection for the impulse radio ultra-wideband systems. The proposed timing synchronizer consists of coarse and fine timing estimation. The synchronizer discovers synchronization points in two stages and performs adaptive threshold based on the maximum pulse averaging and maximum (MAX-PA) method for more precise synchronization. Then, iterative channel estimation is performed based on the discovered synchronization points, and data are detected using the selective rake (S-RAKE) detector employing maximal ratio combining. The proposed synchronizer produces two signals-the start signal for channel estimation and the start signal for start frame delimiter (SFD) detection that detects the packet synchronization signal. With the proposed synchronization, channel estimation, and SFD detection, an S-RAKE receiver with binary pulse position modulation binary phase-shift keying modulation was constructed. In addition, an IEEE 802.15.4a channel model was used for performance comparison. The comparison results show that the constructed receiver yields high performance close to perfect synchronization.

The Design of a Small GNSS Receiver with Enhanced Interference Suppression Capability for High Mobility

  • Park, Yong-Hyun;Moon, Sung-Wook;Shin, Bong-Gyu;Oh, Jong-Su
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제4권1호
    • /
    • pp.9-16
    • /
    • 2015
  • The applications of Global Navigation Satellite System (GNSS) receivers are becoming wider in various commercial and military systems including even small weapon systems such as artillery shells. The precision-guided munitions such as Small Diameter Bomb (SDB) of United States can be used for pinpoint strike by acquiring and tracking GNSS signals in high mobility situation. In this paper, a small GNSS receiver with embedded interference suppression capability working under high dynamic stress is developed which is applicable to the various weapon systems and can be used in other several harsh environments. It applies a kind of matched filter and multiple correlator schemes for fast signal acquisition and tracking of even weak signals and frequency domain signal processing method to eliminate the narrowband interference. To evaluate the performance of the developed GNSS receiver, the test scenario of high mobility and interference environment with the GNSS simulator and signal generator is devised. Then, the signal acquisition time, navigation accuracy, sensitivity, and interference suppression performances under high dynamic operation are evaluated. And the comparison test with the commercial GNSS receiver which has high sensitivity is made under the same test condition.

A Design and Implementation of Software Defined Radio for Rapid Prototyping of GNSS Receiver

  • Park, Kwi Woo;Yang, Jin-Mo;Park, Chansik
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제7권4호
    • /
    • pp.189-203
    • /
    • 2018
  • In this paper, a Software Defined Radio (SDR) architecture was designed and implemented for rapid prototyping of GNSS receiver. The proposed SDR can receive various GNSS and direct sequence spread spectrum (DSSS) signals without software modification by expanded input parameters containing information of the desired signal. Input parameters include code information, center frequency, message format, etc. To receive various signal by parameter controlling, a correlator, a data bit extractor and a receiver channel were designed considering the expanded input parameters. In navigation signal processing, pseudorange was measured based on Coordinated Universal Time (UTC) and appropriate navigation message decoder was selected by message format of input parameter so that receiver position can be calculated even if SDR is set up various GNSS combination. To validate the proposed SDR, the software was implemented using C++, CUDA C based on GPU and USRP. Experimentation has confirmed that changing the input parameters allows GPS, GLONASS, and BDS satellite signals to be received. The precision of the position from implemented SDR were measured below 5 m (Circular Error Probability; CEP) for all scenarios. This means that the implemented SDR operated normally. The implemented SDR will be used in a variety of fields by allowing prototyping of various GNSS signal only by changing input parameters.

Implementation of GPS Spoofing Test Environment using Multiple GPS Simulators

  • So, Hyoungmin
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제5권4호
    • /
    • pp.165-172
    • /
    • 2016
  • A Global Navigation Satellite System (GNSS), which is typically exemplified by the Global Positioning System (GPS), employs a open signal structure so it is vulnerable to spoofing electronic attack using a similar malicious signal with that used in the GPS. It is necessary to require a spoofing test evaluation environment to check the risk of spoofing attack and evaluate the performance of a newly developed anti-spoofing technique against spoofing attacks. The present paper proposed a simulation method of spoofing environment based on simulator that can be implementable in a test room and analyzed the spoofing simulation performance using commercial GPS receivers. The implemented spoofing simulation system ran synchronized two GPS simulator modules in a single scenario to generate both of spoofing and GPS signals simultaneously. Because the signals are generated in radio frequency, a commercial GPS receiver can be tested using this system. Experimental test shows the availability of this system, and anti-spoofing performance of a commercial GPS receiver has been analyzed.

Performance Analysis of MLAT System Receiver for Aircraft Flight Control System

  • Yoo, Sang-Hoon;Oh, Jeong-Hun;Koh, Young-Mok;Kim, Su-Hong;Sung, Tae-Kyung
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제5권1호
    • /
    • pp.29-36
    • /
    • 2016
  • In this paper, performance on receivers of multilateration (MLAT) system that uses ADS-B signal, which is recently becoming popular, was analyzed to overcome shortcomings of existing aircraft flight control systems or reinforce the capabilities. A link budget was analyzed using a channel model in the airport environment with regard to Local Area Multilateration (LAM) for ground-controlled landing around the airport. In order to detect signals that arrived at the receiver successfully, sensitivity of receiver was analyzed using a signal-to-noise ratio (SNR) worksheet, and a method that improves accuracy of the distance measurement was proposed by adopting a peak estimation using sampling signals. Through simulations, optimum specifications of receivers were analyzed to have high precision positioning of LAM, and accuracy of LAM distance measurements was presented.

Design of a Software-Based RNSS Signal Simulator for a New Signal

  • Jo, Gwang Hee;Noh, Jae Hee;Bu, Sung Chun;Ko, Yo Han;Park, Chansik;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제11권4호
    • /
    • pp.381-388
    • /
    • 2022
  • In 2021, development of a regional satellite navigation system called KPS was approved. In this regard, various studies are in progress, but there is no published signal model. So, in relation to the user segment, it is necessary to design a user receiver, but there is no information. Therefore, in this paper, we assume a signal model that can be a candidate signal for KPS based on related studies. This signal uses CNAV-2 structure navigation message, truncated Gold code and BPSK modulation. Based on this signal, a simulator is designed that can be used for receiver design later. The simulator consists of a signal generator and a signal transmitter, and is verified using a software receiver and spectrum analyzer.

Design of Multi-Constellation and Multi-Frequency GNSS SDR with Fully Reconfigurable Functionality

  • Song, Young-Jin;Lee, Hak-beom;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제10권2호
    • /
    • pp.91-102
    • /
    • 2021
  • In this paper, a fully reconfigurable Software Defined Radio (SDR) for multi-constellation and multi-frequency Global Navigation Satellite System (GNSS) receivers is presented. The reconfigurability with respect to the data structure, variability of signal and receiver parameters, and receiver's internal functionality is presented. The configuration file, that is modified to lead to an entirely different operation of the SDR in response to specific target signal scenarios, directly determines the operating characteristics of the SDR. In this manner, receiver designers can effectively reduce the effort to develop many different combinations of multi-constellation and/or multi-frequency GNSS receivers. Finally, the implementation of the presented fully reconfigurable SDR is included with the experimental processing results such as acquisition, tracking, navigation for the received signals in the realistic fields.

Performance Expectation of Single Station PPP-RTK using Dual-frequency GPS Measurement in Korea

  • Ong, Junho;Park, Sul Gee;Park, Sang Hyun;Park, Chansik
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제10권3호
    • /
    • pp.159-168
    • /
    • 2021
  • Precise Point Positioning-Real Time Kinematic (PPP-RTK) is an improved PPP method that provides the user receiver with satellite code and phase bias correction information in addition to the satellite orbit and clock, thus enabling single-receiver ambiguity resolution. Single station PPP-RTK concept is special case of PPP-RTK in that corrections are computed, instead of a network, by only one single GNSS receiver. This study is performed to experimentally verify the positioning accuracy performance of single baseline RTK level by a user who utilizes correction for a single station PPP-RTK using dual frequencies. As an experimental result, the horizontal and vertical 95% accuracy was 2.2 cm, 4.4 cm, respectively, which verify the same performance as the single baseline RTK.

Region Defense Technique Using Multiple Satellite Navigation Spoofing Signals

  • Lee, Chi-Hun;Choi, Seungho;Lee, Young-Joong;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제11권3호
    • /
    • pp.173-179
    • /
    • 2022
  • The satellite navigation deception technology disturbs the navigation solution of the receiver by generating a deceptive signal simulating the actual satellite for the satellite navigation receiver mounted on the unmanned aerial vehicle, which is the target of deception. A single spoofing technique that creates a single deceptive position and velocity can be divided into a synchronized spoofing signal that matches the code delay, Doppler frequency, and navigation message with the real satellite and an unsynchronized spoofing signal that does not match. In order to generate a signal synchronized with a satellite signal, a very sophisticated and high precision signal generation technology is required. In addition, the current position and speed of the UAV equipped with the receiver must be accurately detected in real time. Considering the detection accuracy of the current radar technology that detects small UAVs, it is difficult to detect UAVs with an accuracy of less than one chip. In this paper, we assume the asynchrony of a single spoofing signal and propose a region defense technique using multiple spoofing signals.

다중대역 통합 신호처리 가능한 GNSS 수신기 개발 플랫폼 설계 및 구현 (Design and Implementation of a GNSS Receiver Development Platform for Multi-band Signal Processing)

  • 김진석;이선용;김병균;서흥석;안종선
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제13권2호
    • /
    • pp.149-158
    • /
    • 2024
  • Global Navigation Satellite System (GNSS) receivers are becoming increasingly sophisticated, equipped with advanced features and precise specifications, thus demanding efficient and high-performance hardware platforms. This paper presents the design and implementation of a Field-Programmable Gate Array (FPGA)-based GNSS receiver development platform for multi-band signal processing. This platform utilizes a FPGA to provide a flexible and re-configurable hardware environment, enabling real-time signal processing, position determination, and handling of large-scale data. Integrated signal processing of L/S bands enhances the performance and functionality of GNSS receivers. Key components such as the RF frontend, signal processing modules, and power management are designed to ensure optimal signal reception and processing, supporting multiple GNSS. The developed hardware platform enables real-time signal processing and position determination, supporting multiple GNSS systems, thereby contributing to the advancement of GNSS development and research.