• 제목/요약/키워드: timing error

검색결과 383건 처리시간 0.02초

BLDC 고속 센서리스 구동의 ZCP 추정 오차 저감을 위한 Programmable Low Pass Filter 설계 (A Design of Programmable Low Pass Filter to Reduce the ZCP Estimation Error at High Speed BLDC Sensorless Drive)

  • 서은정;이강석;이우택
    • 전기학회논문지
    • /
    • 제63권1호
    • /
    • pp.35-41
    • /
    • 2014
  • This paper presents a design method of programmable low pass filter(PLPF) which reduce an estimation error of a zero crossing point(ZCP) for a high speed brushless DC(BLDC) motor drive. BLDC motor sensorless drive is possible by estimation of ZCP. The ZCP estimated by detecting a change of back-EMF polarity has the estimation error because noises exist on the measured back-EMF. Therefore a calculated commutation timing using the ZCP is inaccurate. And the inexact commutation timing leads to ripples of 3-phase current and degradation of drive performance. This paper proposes the design method of the PLPF to overcome these problems. First, a speed calculated a inaccurate period of the ZCP is analyzed in the frequency domain. Then, the PLPF that has varying cut-off frequency according to change of the speed is designed on the frequency analysis result. The proposed method is verified by the experiment.

Monitoring QZSS CLAS-based VRS-RTK Positioning Performance

  • Lim, Cheolsoon;Lee, Yebin;Cha, Yunho;Park, Byungwoon;Park, Sul Gee;Park, Sang Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제11권4호
    • /
    • pp.251-261
    • /
    • 2022
  • The Centimeter Level Augmentation Service (CLAS) is the Precise Point Positioning (PPP) - Real Time Kinematic (RTK) correction service utilizing the Quasi-Zenith Satellite System (QZSS) L6 (1278.65 MHz) signal to broadcast the Global Navigation Satellite System (GNSS) error corrections. Compact State-Space Representation (CSSR) corrections for mitigating GNSS measurement error sources such as satellite orbit, clock, code and phase biases, tropospheric error, ionospheric error are estimated from the ground segment of QZSS CLAS using the code and carrier-phase measurements collected in the Japan's GNSS Earth Observation Network (GEONET). Since the CLAS service begun on November 1, 2018, users with dedicated receivers can perform cm-level precise positioning using CSSR corrections. In this paper, CLAS-based VRS-RTK performance evaluation was performed using Global Positioning System (GPS) observables collected from the refence station, TSK2, located in Japan. As a result of performing GPS-only RTK positioning using the open-source software CLASLIB and RTKLIB, it took about 15 minutes to resolve the carrier-phase ambiguities, and the RTK fix rate was only about 41%. Also, the Root Mean Squares (RMS) values of position errors (fixed only) are about 4cm horizontally and 7 cm vertically.

Development of Korean VTEC Polynomial Model Using GIM

  • Park, Jae-Young;Kim, Yeong-Guk;Park, Kwan-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제11권4호
    • /
    • pp.297-304
    • /
    • 2022
  • The models used for ionosphere error correction in positioning using Global Navigation Satellite System (GNSS) are representatively Klobuchar model and NeQuick model. Although these models can correct the ionosphere error in real time, the disadvantage is that the accuracy is only 50-60%. In this study, a method for polynomial modeling of Global Ionosphere Map (GIM) which provides Vertical Total Electron Content (VTEC) in grid type was studied. In consideration of Ionosphere Pierce Points (IPP) of satellites with a receivable elevation angle of 15 degrees or higher on the Korean Peninsula, the target area for model generation and provision was selected, and the VTEC at 88 GIM grid points was modeled as a polynomial. The developed VTEC polynomial model shows a data reduction rate of 72.7% compared to GIM regardless of the number of visible satellites, and a data reduction rate of more than 90% compared to the Slant Total Electron Content (STEC) polynomial model when there are more than 10 visible satellites. This VTEC polynomial model has a maximum absolute error of 2.4 Total Electron Content Unit (TECU) and a maximum relative error of 9.9% with the actual GIM. Therefore, it is expected that the amount of data can be drastically reduced by providing the predicted GIM or real-time grid type VTEC model as the parameters of the polynomial model.

GNSS Airborne Multipath Error Modeling Under UAV Platform and Operating Environment

  • Kim, Minchan;Kim, Kiwan;Lee, Dong-Kyeong;Lee, Jiyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제4권1호
    • /
    • pp.1-7
    • /
    • 2015
  • In the case of an unmanned aerial vehicle (UAV) equipped with a GNSS sensor, a boundary line where the vehicle can actually exist can be calculated using a navigation error model, and safe navigation (e.g., precise landing and collision prevention) can be supported based on this boundary line. Therefore, for the safe operation of UAV, a model for the position error of UAV needs to be established in advance. In this study, the multipath error of a GNSS sensor installed at UAV was modeled through a flight test, and this was analyzed and compared with the error model of an existing manned aircraft. The flight test was conducted based on a scenario in which UAV performs hovering at an altitude of 40 m, and it was found that the multipath error value was well bound by the error model of an existing manned aircraft. This result indicates that the error model of an existing manned aircraft can be used in operation environments similar to the scenario for the flight test. Also, in this study, a scenario for the operation of multiple UAVs was considered, and the correlation between the multipath errors of the UAVs was analyzed. The result of the analysis showed that the correlation between the multipath errors of the UAVs was not large, indicating that the multipath errors of the UAVs cannot be canceled out.

OFDMA/TDD 시스템을 위한 효율적인 동기 추정 및 셀 탐색 기법 (An Efficient Synchronization and Cell Searching Method for OFDMA/TDD System)

  • 김정주;노정호;장경희
    • 한국통신학회논문지
    • /
    • 제30권9A호
    • /
    • pp.714-721
    • /
    • 2005
  • 본 논문에서는 직교 주파수 분할 다중 접속/시 분할 다중화(OFDMA/TDD :OFDM-FDMA/ Time Division Duplexing) 시스템에서의 프리앰블 모델을 분석하고, AWGN과 ITU-R M.1225 Ped-B 및 Veh-A 채널 환경에서 OFDMA/TDD 시스템에 적용된 심볼 타이밍 및 반송파 주파수 오프셋 추정과 셀 탐색 성능을 모의 실험을 통하여 그에 따른 성능을 Detection Probability, False Alarm, Missing Probability, Mean Acqusition Time 및 (MSE) Mean Square Error 로 확인한다. 특히, 심볼 타이밍 오프셋 추정에서는 향상된 성능을 가지는 프리앰블 구조 및 알고리즘을 제안한 후, 기존의 프리앰블 구조와 그에 따른 성능을 비교 분석한다.

반복적인 프리엠블을 이용한 반송파 및 심볼 타이밍 동시 복원 (Joint Carrier and Symbol Timing Recovery Using Repetitive Preamble)

  • 오성근;황병대
    • 한국통신학회논문지
    • /
    • 제25권8B호
    • /
    • pp.1436-1444
    • /
    • 2000
  • 본 논문에서는 버스트 모뎀에서 반복적인 프리엠블(preamble)과 차등 검출 방식을 이용하여 반송파와 타이밍을 동시에 복원하는 동기 검출 알고리즘을 제안한다 제안된 방식은 짧은 길이의 프리엠블과 낮은 SNR(signal-to-noise ratio)에서도 주파수 편차의 정도에 관계없이 주파수 편차와 심볼 타이밍 오차를 높은 정확도로 추정할 수 있으며 CPFSK(continuous phase frequency shift keying) 방식 및 PSK(phase shift keying) 유형의 방식에 적용이 된다 모의 실험을 통하여 제안된 동기 방식과 기존의 동기 방식들과의 방식들의 프리엠블의 길이에 따른 동기 검출 성능을 비교하고 비트 오류율에 미치는 영향을 분석한다.

  • PDF

순환상관(Cyclic Correlation)을 이용한 OFDM 시스템에서의 블라인드 동기 알고리즘 (Blind OFDM Synchronization Algorithm using Cyclic Correlation)

  • 박병준;고은석;강창언;홍대식
    • 한국통신학회논문지
    • /
    • 제30권1C호
    • /
    • pp.92-98
    • /
    • 2005
  • 본 논문에서는 OFDM 시스템의 시간 오차와 주파수 오차를 추정하는 방안을 제시하고 있다. 제안한 동기 알고리즘은 수신 신호의 순환상괸(cyclic correlation)을 이용하며, 이 순환상관에는 시간과 주파수 오차 정보가 모두 나타나게 된다. 따라서 제안하는 추정 알고리즘은 여분의 학습심볼(training symbol)를 필요로 하지 않으며, 채널의 정보를 사용하지 않는다. 제안한 추정 방법은 평균자승오차(mean square error) 성능에서 잡음이나 채널의 특성에 상관없이 거의 일정한 성능을 가지며, 실험 결과는 이러한 특징을 뒷받침 해주고 있다. 좀 더 정확한 추정을 위해서, 순환 상관을 평균을 취하는 방법이 적용되었다. 이 경우, 평균을 취하는 방법은 평균을 취하지 않는 방법보다 훨씬 더 정확한 추정을 가능하게 한다.

Integrated Navigation Filter Design for Trains Considering the Mounting Misalignment Error of the IMU

  • Chae, Myeong Seok;Cho, Seong Yun;Shin, Kyung Ho
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제10권3호
    • /
    • pp.179-187
    • /
    • 2021
  • To estimate the location of the train, we consider an integrated navigation system that combines Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS). This system provides accurate navigation results in open sky by combining only the advantages of both systems. However, since measurement update cannot be performed in GNSS signal blocked areas such as tunnels, mountain, and urban areas, pure INS is used. The error of navigation information increases in this area. In order to reduce this problem, the train's Non-Holonomic Constraints (NHC) information can be used. Therefore, we deal with the INS/GNSS/NHC integrated navigation system in this paper. However, in the process of installing the navigation system on the train, a Mounting Misalignment Error of the IMU (MMEI) inevitably occurs. In this case, if the NHC is used without correcting the error, the navigation error becomes even larger. To solve this problem, a method of easily estimating the MMEI without an external device is introduced. The navigation filter is designed using the Extended Kalman Filter (EKF) by considering the MMEI. It is assumed that there is no vertical misalignment error, so only the horizontal misalignment error is considered. The performance of the integrated navigation system according to the presence or absence of the MMEI and the estimation performance of the MMEI according to the method of using NHC information are analyzed based on simulation. As a result, it is confirmed that the MMEI is accurately estimated by using the NHC information together with the GNSS information, and the performance and reliability of the integrated navigation system are improved.

TOA Based Indoor Positioning Algorithm in NLOS Environments

  • Lim, Jaewook;Lee, Chul-Soo;Seol, Dong-Min;Jung, Sunghun;Lee, Sangbeom
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제10권2호
    • /
    • pp.121-130
    • /
    • 2021
  • In this paper, we propose a method to improve the positioning accuracy of TOA based indoor positioning system in NLOS environments. TOA based indoor positioning systems have been studied mostly considering LOS environments. However, it is almost impossible to maintain the LOS environments due to obstacles such as people, furniture, walls, and so on. The proposed method in this study compensates the range error caused by the NLOS environments. We confirmed that positioning accuracy of a proposed method is improved than conventional algorithms through simulation and field test.

Analysis of the Combined Positioning Accuracy using GPS and GLONASS Navigation Satellites

  • Choi, Byung-Kyu;Roh, Kyoung-Min;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제2권2호
    • /
    • pp.131-137
    • /
    • 2013
  • In this study, positioning results that combined the code observation information of GPS and GLONASS navigation satellites were analyzed. Especially, the distribution of GLONASS satellites observed in Korea and the combined GPS/GLONASS positioning results were presented. The GNSS data received at two reference stations (GRAS in Europe and KOHG in Goheung, Korea) during a day were processed, and the mean value and root mean square (RMS) value of the position error were calculated. The analysis results indicated that the combined GPS/GLONASS positioning did not show significantly improved performance compared to the GPS-only positioning. This could be due to the inter-system hardware bias for GPS/GLONASS receivers, the selection of transformation parameters between reference coordinate systems, the selection of a confidence level for error analysis, or the number of visible satellites at a specific time.