• Title/Summary/Keyword: time-weighted mean concentration

Search Result 18, Processing Time 0.03 seconds

Comparison of Composite Methods of Satellite Chlorophyll-a Concentration Data in the East Sea

  • Park, Kyung-Ae;Park, Ji-Eun;Lee, Min-Sun;Kang, Chang-Keun
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.6
    • /
    • pp.635-651
    • /
    • 2012
  • To produce a level-3 monthly composite image from daily level-2 Sea-viewing Wide Field-of-view Sensor (SeaWiFS) chlorophyll-a concentration data set in the East Sea, we applied four average methods such as the simple average method, the geometric mean method, the maximum likelihood average method, and the weighted averaging method. Prior to performing each averaging method, we classified all pixels into normal pixels and abnormal speckles with anomalously high chlorophyll-a concentrations to eliminate speckles from the following procedure for composite methods. As a result, all composite maps did not contain the erratic effect of speckles. The geometric mean method tended to underestimate chlorophyll-a concentration values all the time as compared with other methods. The weighted averaging method was quite similar to the simple average method, however, it had a tendency to be overestimated at high-value range of chlorophyll-a concentration. Maximum likelihood method was almost similar to the simple average method by demonstrating small variance and high correlation (r=0.9962) of the differences between the two. However, it still had the disadvantage that it was very sensitive in the presence of speckles within a bin. The geometric mean was most significantly deviated from the remaining methods regardless of the magnitude of chlorophyll-a concentration values. Its bias error tended to be large when the standard deviation within a bin increased with less uniformity. It was more biased when data uniformity became small. All the methods exhibited large errors as chlorophyll-a concentration values dominantly scatter in terms of time and space. This study emphasizes the importance of the speckle removal process and proper selection of average methods to reduce composite errors for diverse scientific applications of satellite-derived chlorophyll-a concentration data.

Estimation of Total Exposure to Benzene, Toluene and Xylene by Microenvironmental Measurements for Iron Mill Workers (제철소 근로자의 벤젠/톨루엔/크실렌 국소환경 측정을 이용한 총 노출 예측)

  • Kim, Young-Hee;Yang, Won-Ho;Son, Bu-Soon
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.5
    • /
    • pp.359-364
    • /
    • 2007
  • The aim of this study were to assess the personal exposure to volatile organic compounds (VOCs) and to estimate the personal exposure using time-weighted average model. Three target VOCs (benzene, toluene, xylene) were analyzed in personal exposure samples and residential indoor, residential outdoor and workplace indoor microenvironments samples in the iron mill 30 workers during working 5 days. Personal exposure to VOCs significantly correlated with workplace concentration p<0.05), suggesting workplace had strong source and major contribution to personal exposure. Personal exposure could be estimated with time activity pattern and time weighted average (TWA) model of residential indoor and workplace concentrations measured. Time weighted mean microenvironments concentrations were close approximately of personal exposure concentrations. Total exposure for participants can be estimated by TWA with microenvironments measurements and time activity pattern.

A Study on the Characteristics of Airborne Trace Metal Elements using Diverse Statistical Approaches in the Daejeon 1st and 2nd Industrial Complex Area (다양한 통계기법을 이용한 대전 1,2 공단지역의 미량금속원소의 특성 연구)

  • 이진홍;장미숙;임종명
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.2
    • /
    • pp.95-112
    • /
    • 2002
  • A precision analysis was conducted for the quantification of trace metal levels in airborne particulates using ICP-MS. According to our study the quantitative analysis using Whatman grade 41 filters produces more precise and representative values of metal concentrations than that using EPM 2000 filters. The mean concentration of PM 10 analyzed during 1998 ~ 2000 was 82 $\mu$g/m$^3$. The concentrations of human carcinogens such as As and Cr were 8.65 and 25.87 ng/m$^3$, respectively, while those of probable human carcinogens such as Cd and Pb were 3.13 and 219.46 ng/m$^3$, respectively. Time-weighted mean concentration, calculated using surface wind speed and direction, indicated that there were differences between metals of crustal origin and metals of anthropogenic origin. The rectorial concentrations of anthropogenic metals and PM 10 were higher for north -west sector with calm or low wind speed conditions than for any other sector with high wind speed conditions. On the contrary, the rectorial concentrations of crustal metals were high with high wind speed. In addition, the sectorial concentrations of crustal metals were more affected by south-west wind directions, which were compared with those of anthropogenic metals. The enrichment factor (EF) values of many anthropogenic metals were higher than 50, while those of crustal metals were lower than 3, respectively. The concentrations of Cr and Ni in Daejeon industrial complex area were 11 times higher than those in the background site of Kuopio in Finland, while that of Pb in the complex area was 22 times higher, respectively.

A Spatio-Temporal Variation Pattern of Oiling Status Using Spatial Analysis in Mallipo Beach of Korea (공간분석 기법을 이용한 만리포 유분의 시·공간 변동 패턴 분석)

  • Kim, Tae-Hoon;Choi, Hyun-Woo;Kim, Moon-Koo;Shim, Won-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.4
    • /
    • pp.90-103
    • /
    • 2012
  • Mallipo is a representative beach contaminated by Hebei Spirit oil spill accident in December 2007. This study aims to compare the differences of two seasons (winter and summer) for the spatio-temporal variation patterns of oiling status in the whole area and divided five regions of Mallipo beach. In the whole area, the decreasing rate of average TPH (total petroleum hydrocarbon) in winter was twice greater than summer during four years. According to the spatial variation pattern analysis of oiling status using weighted mean center and weighted standard distance, the oil concentration was clustered on southwestern region in winter, however, the TPH was dispersed in the whole area in summer. Temporal variation pattern of TPH in each of Mallipo's five regions showed that TPH had been consistently decreased in winter, but oil concentration had not been changed in summer since 2009 except the southwestern region. Therefore, in order to evaluate and predict the progress of oiling status, it is needed to analyze the spatio-temporal variation pattern of TPH using spatial analysis after separating data into seasons (e.g., winter and summer). In addition, time series analysis is useful in the regional scales through spatial partitioning rather than the whole beach area for the understanding of temporal variation pattern.

Salinity Routing Through Reservoir using WRAP-SALT (WRAP-SALT를 이용한 저수지 염분 추적)

  • Lee, Chi-Hun;Ko, Taek-Jo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.221-221
    • /
    • 2012
  • The WRAP-SALT (Water Rights Analysis Package-SALT) simulation includes computation of end-of-month reservoir storage concentrations and mean monthly reservoir outflow concentrations for each month of the simulation. The model computes reservoir storage loads and concentrations based on load balance accounting algorithms and computes concentrations of water released and withdrawn from a reservoir as a function of the volume-weighted mean concentration of the water stored in the reservoir in the current month or previous months. A load budget accounting of the various component load inflows and outflows entering and leaving a reservoir is performed. A time history of storage concentrations computed for previous months is maintained for use in the lag procedure. This study presents computational methods for routing salinity through reservoirs for incorporation into WRAP-SALT simulation routines and methods for determining values for the parameters of the routing methods.

  • PDF

Online analysis of iron ore slurry using PGNAA technology with artificial neural network

  • Haolong Huang;Pingkun Cai;Xuwen Liang;Wenbao Jia
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2835-2841
    • /
    • 2024
  • Real-time analysis of metallic mineral grade and slurry concentration is significant for improving flotation efficiency and product quality. This study proposes an online detection method of ore slurry combining the Prompt Gamma Neutron Activation Analysis (PGNAA) technology and artificial neural network (ANN), which can provide mineral information rapidly and accurately. Firstly, a PGNAA analyzer based on a D-T neutron generator and a BGO detector was used to obtain a gamma-ray spectrum dataset of ore slurry samples, which was used to construct and optimize the ANN model for adaptive analysis. The evaluation metrics calculated by leave-one-out cross-validation indicated that, compared with the weighted library least squares (WLLS) approach, ANN obtained more precise and stable results, with mean absolute percentage errors of 4.66% and 2.80% for Fe grade and slurry concentration, respectively, and the highest average standard deviation of only 0.0119. Meanwhile, the analytical errors of the samples most affected by matrix effects was reduced to 0.61 times and 0.56 times of the WLLS method, respectively.

A study on the urinary metabolites of styrene exposed workers (직업적으로 스티렌에 노출된 근로자의 뇨중 대사산물에 관한 연구)

  • 오세욱;원정일
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.3
    • /
    • pp.1-7
    • /
    • 1996
  • Mandelic acid is the major metabolite and phenylglyoxylic acid is the minor metabolite of styrene in human. This study was conducted to investigate the correlation between exposure concentrations of styrene and concentration of the metabolites in urine The concentrations of metabolites in urine and exposure concentrations were measured in 60 workers who were occupationally exposed to styrene in FRP industry as well as paint industry and musical instrument manufacturing industry and the concentrations of metabolites in urine ware measured in 90 workers not occupationally exposed to styrene for review the background level in the unexposed population. The results obtained were as follows; 1. The mean exposure concentration is 16.6 $\pm $12.2 ppm (range 0.4-49.9ppm) in the styrene exposed workers. 2. The concentration of mandelic acid in urine collected at the end of shift from worker exposed 8 hours to 50ppm of styrene, based on extrapolation from correlation equations was 578.5 mg/g creatinine and 176.8 mg/g creatinine for next morning urine, the concentration of phenylglyoxylic acid in urine collected at the end of shift was 291.1 mg/g creatinine, 177.9 mg/g creatinine in next morning urine. In the sum of mandelic acid and phenylglyoxylic acid in the urine 870.2 mg/g creatinine in urine sampled at the end of shift corresponds to an exposure of 50ppm of styrene and 366.0 mg/g creatinine for next morning sample corresponds to 50ppm. 3. The correlation of the degree of exposed with sum concentration of mandeliacid and phenylglyoxylic acid in the urine was better(r=0.079 for end of shift, r=0.78 for next morning) than the correlation with single determinant measurement in urine(r=0.75 for mandelic acid at end of shift, r=0.73 for mandelic acid at next morning, r=0.69 for phenylglyoxylic acid at end of shift, r=0.62 for phenylglyoxylic acid at next morning). The monitoring of sum concentration of mandelic acid and phenylglyoxylic acid in urine is a valuable indicator of time weighted average daily exposure ti styrene. And the exposure standard of urinary metabolites produced by styrene should be set, in distinction urine at the end of shift from urine at next morning.

  • PDF

Statistical Back Trajectory Analysis for Estimation of CO2 Emission Source Regions (공기괴 역궤적 모델의 통계 분석을 통한 이산화탄소 배출 지역 추정)

  • Li, Shanlan;Park, Sunyoung;Park, Mi-Kyung;Jo, Chun Ok;Kim, Jae-Yeon;Kim, Ji-Yoon;Kim, Kyung-Ryul
    • Atmosphere
    • /
    • v.24 no.2
    • /
    • pp.245-251
    • /
    • 2014
  • Statistical trajectory analysis has been widely used to identify potential source regions for chemically and radiatively important chemical species in the atmosphere. The most widely used method is a statistical source-receptor model developed by Stohl (1996), of which the underlying principle is that elevated concentrations at an observation site are proportionally related to both the average concentrations on a specific grid cell where the observed air mass has been passing over and the residence time staying over that grid cell. Thus, the method can compute a residence-time-weighted mean concentration for each grid cell by superimposing the back trajectory domain on the grid matrix. The concentration on a grid cell could be used as a proxy for potential source strength of corresponding species. This technical note describes the statistical trajectory approach and introduces its application to estimate potential source regions of $CO_2$ enhancements observed at Korean Global Atmosphere Watch Observatory in Anmyeon-do. Back trajectories are calculated using HYSPLIT 4 model based on wind fields provided by NCEP GDAS. The identified $CO_2$ potential source regions responsible for the pollution events observed at Anmyeon-do in 2010 were mainly Beijing area and the Northern China where Haerbin, Shenyang and Changchun mega cities are located. This is consistent with bottom-up emission information. In spite of inherent uncertainties of this method in estimating sharp spatial gradients within the vicinity of the emission hot spots, this study suggests that the statistical trajectory analysis can be a useful tool for identifying anthropogenic potential source regions for major GHGs.

Perfusion MR Imaging in Gliomas: Comparison with Histologic Tumor Grade

  • Sun Joo Lee;Jae Hyoung Kim;Young Mee Kim;Gyung Kyu Lee;Eun Ja Lee;In Sung Park;Jin-Myung Jung;Kyeong Hun Kang;Taemin Shin
    • Korean Journal of Radiology
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • Objective: To determine the usefulness of perfusion MR imaging in assessing the histologic grade of cerebral gliomas. Materials and Methods: In order to determine relative cerebral blood volume (rCBV), 22 patients with pathologically proven gliomas (9 glioblastomas, 9 anaplastic gliomas and 4 low-grade gliomas) underwent dynamic contrast-enhanced T2*-weighted and conventional T1- and T2-weighted imaging. rCBV maps were obtained by fitting a gamma-variate function to the contrast material concentration versus time curve. rCBV ratios between tumor and normal white matter (maximum rCBV of tumor / rCBV of contralateral white matter) were calculated and compared between glioblastomas, anaplastic gliomas and low-grade gliomas. Results: Mean rCBV ratios were 4.90°±1.01 for glioblastomas, 3.97°±0.56 for anaplastic gliomas and 1.75°±1.51 for low-grade gliomas, and were thus significantly different; p < .05 between glioblastomas and anaplastic gliomas, p < .05 between anaplastic gliomas and low-grade gliomas, p < .01 between glioblastomas and low-grade gliomas. The rCBV ratio cutoff value which permitted discrimination between high-grade (glioblastomas and anaplastic gliomas) and low-grade gliomas was 2.60, and the sensitivity and specificity of this value were 100% and 75%, respectively. Conclusion: Perfusion MR imaging is a useful and reliable technique for estimating the histologic grade of gliomas.

  • PDF

Chemical Characterization of Rainwater Sampled in Cheju city (제주시 강우의 화학적 조성 특성에 관하여)

  • 이기호;허철구
    • Journal of Environmental Science International
    • /
    • v.5 no.6
    • /
    • pp.739-748
    • /
    • 1996
  • This study was carried out to investigate the chemical characteristics ol rainwater sampled in Cheju City from July 1994 to June 1996. Concentrations of major ions (Cl-,$SO_4^{2-}$, NO_3^-$, $Na^+$, $K^+$, Ca^{2+}$, $Mg^{2+}$ and NH_4^+$) were determined. The pH of rainwater, calculated from the volume weighted H+ concentration, was found to be 5.61, indicating extensive neutralization of the acidity in the rain. The relative magnitude of average ionic concentrations followed the relation Cl-> $SO_4^{2-}$) $Na^+$> Ca^{2+}$> NH_4^+$> NO_3^-$> $Mg^{2+}$> $K^+$. The ions associated with sea salt, namely $Na^+$ and $Cl^-$, dominated the total concentration of ions in the rainwater and the $SO_4^{2-}$ ion accounts for 20% of total concentration. [H+][nss-SO42-+NO3] ratio and a multiple regression for $SO_4^{2-}$ and NO3- ions against $H^+$, $Ca^{2+}$ and $NH_4^+$ suggested that all of $SO_4^{2-}$ and $NO_3^-$ in rainwater was not necessarily associated with $H_2SO_4$ and $HNO_3$, but might also occur in combination with $NH_4^+$ or Ca^{2+}$. The monthly mean concentrations of $SO_4^{2-}$-, Ca^{2+}$ and $NH_4^+$ in spring time was higher than those in other seasons. These results may De attributed to the fertilizer application as the local sources and the yellow sand phenomina as a regional-scale sources.

  • PDF