Rapid post-earthquake damage estimation of subway stations is particularly necessary to improve short-term crisis management and safety measures of urban subway systems after a destructive earthquake. The conventional Performance-Based Earthquake Engineering (PBEE) framework with constant earthquake occurrence rate is invalid to estimate the aftershock risk because of the time-varying rate of aftershocks and the uncertainty of mainshock-damaged state before the occurrence of aftershocks. This study presents a time-varying probabilistic seismic risk assessment framework for underground structures considering mainshock and aftershock hazards. A discrete non-omogeneous Markov process is adopted to quantify the time-varying nature of aftershock hazard and the uncertainties of structural damage states following mainshock. The time-varying seismic risk of a typical rectangular frame subway station is assessed under mainshock-only (MS) hazard and mainshock-aftershock (MSAS) hazard. The results show that the probabilities of exceeding same limit states over the service life under MSAS hazard are larger than the values under MS hazard. For the same probability of exceedance, the higher response demands are found when aftershocks are considered. As the severity of damage state for the station structure increases, the difference of the probability of exceedance increases when aftershocks are considered. PSDR=1.0% is used as the collapse prevention performance criteria for the subway station is reasonable for both the MS hazard and MSAS hazard. However, if the effect of aftershock hazard is neglected, it can significantly underestimate the response demands and the uncertainties of potential damage states for the subway station over the service life.
This paper aims to investigate the time-varying systematic risk of the stocks of Korean logistics firms. For this purpose, the period from January 1991 to October 2016 was examined with respect to 21 logistics companies that are listed on the Korea Exchange. The systematic risk of the logistics stocks is measured in terms of the Capital Asset Pricing Model (CAPM) beta for which the sensitivity of a stock is compared to the return changes of the whole market. Overall, the betas of the stocks of the Korean logistics companies are significantly lower than those of the market unity; however, it was revealed that the logistics betas are not constant, but are actually time-varying according to different economic regimes, which is consistent with the previous empirical findings. This finding is robust across different measurements of the logistics betas. In addition, the impact of macroeconomic factors on the logistics betas was examined. The present study shows that the logistics betas are positively associated with foreign exchange-rate changes.
The Journal of Asian Finance, Economics and Business
/
v.7
no.10
/
pp.63-71
/
2020
In this paper, we propose the new time-varying coefficient GARCH-in-Mean model. The benefit of our model is to allow the risk-return parameter in the mean equation to vary over time. At the end of 2019 to the beginning of 2020, the world witnessed two shocking events: COVID-19 pandemic and 2020 oil price war. So, we decide to use the daily data from December 2, 2019 to May 29, 2020, which cover these two major events. The purpose of this study is to find the dynamic movement between risk and return in four major oil markets: Brent, West Texas Intermediate, Dubai, and Singapore Exchange, during COVID-19 pandemic and 2020 oil price war. For the European oil market, our model found a significant and positive risk-return relationship in Brent during March 26-April 21, 2020. For the North America oil market, our model found a significant positive risk return relationship in West Texas Intermediate (WTI) during March 12-May 8, 2020. For the Middle East oil market, we found a significant and positive risk-return relationship in Dubai during March 12-April 14, 2020. Lastly, for the South East Asia oil market, we found a significant positive risk return relationship in Singapore Exchange (SGX) from March 9-May 29, 2020.
This paper examines the time-series relations among expected return, risk, and book-to-market(B/M) at the portfolio level. The time-series analysis is a natural alternative to cross-sectional regressions. An alternative feature of the time-series regressions is that they focus on changes in expected returns, not on average returns. Using the time-series analysis, we can directly test whether the three-factor model explains time-varying expected returns better than the characteristic-based model. These results should help distinguish between the risk and mispricing stories. We find that B/M is strongly associated with changes in risk, as measured by the Fama and French(1993) three-factor model. After controlling for changes in risk, B/M contains little additional information about expected returns. The evidence suggests that the three-factor model explains time-varying expected returns better than the characteristic-based model.
This paper tries to investigate the relationships among stock return volatility, time-varying risk premium and Korea Discount. Using Korean Composite Stock Price Index (KOSPI) return from January 4, 1980 to August 31, 2005, this study finds possible links between time-varying risk premium and Korea Discount. First of all, this study classifies Korean stock returns during the sample period by three regime-switching volatility period that is to say, low-volatile period medium-volatile period and highly-volatile period by estimating Markov-Switching ARCH model. During the highly volatile period of Korean stock return (09/01/1997-05/31/2001), the estimated time-varying unit risk premium from the jump-diffusion GARCH model was 0.3625, where as during the low volatile period (01/04/1980-l1/30/1985), the time-varying unit risk premium was estimated 0.0284 from the jump diffusion GARCH model, which was about thirteen times less than that. This study seems to find the evidence that highly volatile Korean stock market may induce large time-varying risk premium from the investors and this may lead to Korea discount.
Recurrent event data occurs when a subject experience the event of interest several times and has been found in biomedical studies, sociology and engineering. Several diverse approaches have been applied to analyze the recurrent events (Cook and Lawless, 2007). In this study, we analyzed the YTOP(Young Traffic Offenders Program) dataset which consists of 192 drivers with conviction dates by speeding violation and traffic rule violation. We consider a subject-specific effect, frailty, to reflect the individual's driving behavior and extend to time-varying frailty effect. Another feature of this study is about the redefinition of risk set. During the study, subject may be under suspension and this period is regarded as non-risk period. Thus the risk variables are reformatted according to suspension and termination time.
In this paper, we present empirical testing result to examine the validity of inbound supply and outbound demand risk factors in the sense of early predicting the firm's bankruptcy risk level. The risk factors are drawn from industry uncertainty attributes categorized as uncertainties of input market (inbound supply), and product market (outbound demand). On the basis of input-output table, industry level inbound and outbound sectors are identified to formalize supply chain structures, relevant inbound and outbound uncertainty attributes and corresponding risk factors. Subsequently, publicly available macro-economic indicators are used to appropriately quantify these risk factors. Total 68 industry level bankruptcy risk forecasting results are presented with the average R-square scores of between 53.4% and 37.1% with varying time lag. The findings offers useful insights to incorporate supply chain risk to the body of firm's bankruptcy risk level prediction literature.
Renewable energy industry not only has a promising future but also has more risk than conventional energy industry because of its characteristics. Therefore, in this study, an analysis of domestic renewable energy company risk has been performed. The risk of domestic wind and photovoltaic energy companies has been analyzed by using time varying beta model. The model has been constructed based on risk factors like firm size, firm diversification index, domestic installation, and so on. The principal result of analysis can be summarized as follows. First, risk factors affect domestic renewable energy companies have been discovered. Variables like firm size, growth rate of debt ratio, firm diversification index are statistically significant. I found that large firms are less riskier than small firms. It is also confirmed that companies with high diversification index and high debt ratio have high risk. Second, I got the result that policy factors like domestic renewable energy installation and government R&D expenditure could decrease risk of domestic renewable energy company. Third, relative sensitivity of each risk factor have been discovered. The effect of each variable gets bigger in this order: growth rate of domestic installation, firm size or diversification index, growth rate of debt ratio, growth rate of government R&D expenditure.
In this study, daily data from January 2002 to June 2022 were used to investigate the relationship between risk-return relationship and market fear, uncertainty, stock market, and maritime freight index for the crude oil market. For this study, the time varying EGARCH-M model was applied to the risk-return relationship, and the wavelet consistency model was used to analyze the relationship between market fear, uncertainty, stock market, and maritime freight index. The analysis results of this study are as follows. First, according to the results of the time-varying risk-return relationship, the crude oil market was found to be related to high returns and high risks. Second, the results of correlation and Granger causality test, it was found that there was a weak correlation between the risk-return relationship and VIX, EPU, S&P500, and BDI. In addition, it was found that there was no two-way causal relationship in the risk-return relationship with EPU and S&P500, but VIX and BDI were found to affect the risk-return relationship. Third, looking at the results of wavelet coherence, it was found that the degree of the risk-return relationship and the relationship between VIX, EPU, S&P500, and BDI was time-varying. In particular, it was found that the relationship between each other was high before and after the crisis period (financial crisis, COVID-19). And it was found to be highly associated with organs. In addition, the risk-return relationship was found to have a positive relationship with VIX and EPU, and a negative relationship with S&P500 and BDI. Therefore, market participants should be well aware of economic environmental changes when making decisions.
Proceedings of the Korean Operations and Management Science Society Conference
/
2004.05a
/
pp.636-647
/
2004
The objective of this paper is to provide an improved reorder decision policy for general multi-echelon distribution systems utilizing the shared stock information. It has been known that traditional reorder policies sometimes show poor performance in distribution systems. Thus, in our previous research we introduced the order risk policy which utilizes the shared stock information more accurately for the 2-echelon distribution system and proved the optimality. However, since the real world supply chain is generally composed with more than 2 echelons, we extend the order risk policy for the general multi-echelon systems. Since the calculation of the exact order risk value for general multi-echelon systems is very complex, we provide two approximation methods for the real-time calculation. Through the computational experiment comparing the order risk policy with the existing policies under various conditions, we show the performance of the order risk policy and analyze the value of the shared stock information varying with the characteristics of the supply chain.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.