• Title/Summary/Keyword: time-to-corrosion

Search Result 1,119, Processing Time 0.027 seconds

Monitoring of Atmospheric Corrosivity inside Steel Upper Box Girder in Yeongjong Grand Bridge

  • Li, SeonYeob
    • Corrosion Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.87-94
    • /
    • 2011
  • The typical corrosion prevention method inside the steel upper box girder in a suspension bridge involves the use of paints. However, in an effort to reduce environmental impact and cost, the suspension portion of the Yeongjong Bridge, Korea utilizes dehumidification systems to control humidity and prevent corrosion inside its box girder. Maintaining a uniform humidity distribution at the proper level inside the box girder is critical to the successful corrosion control. In this study, the humidity and the resultant atmospheric corrosivity inside the box girder of the Yeongjong Bridge was monitored. The corrosion rate of the steel inside the box girder was obtained using thin-film electrical resistance (TFER) corrosion sensors. Time-of-wetness (TOW) measurements and the deposition rates of atmospheric pollutants such as $Cl^{-}$ and $SO_{x}$ were also obtained. Classification of the atmospheric corrosivity inside the box girder was evaluated according to ISO 9223. As a result, no corrosion was found in the upper box girder, indicating that the dehumidification system used in the Yeongjong Bridge is an effective corrosion control method.

Examination on Required Cover Depth to Prevent Reinforcement Corrosion Risk in Concrete

  • Yoon, In-Seok
    • Corrosion Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.157-164
    • /
    • 2012
  • In first experiment series, this paper is devoted for examining progress of reinforcement corrosion due to carbonation in concrete and to quantify uncarbonation depth to protect reinforcement from corroding. The tolerance of cover depth should be considered in order to prevent carbonation-induced corrosion. From the relationship between the weight loss of reinforcement and corrosion current density for a given time, therefore, the tolerance of cover depth to prevent carbonation-induced corrosion is computed. It is observed that corrosion occurs when the distance between carbonation front and reinforcement surface (uncarbonated depth) is smaller than 5 mm.As a secondary purpose of this study, it is investigated to examine the interaction between carbonation and chloride penetration and their effects on concrete. This was examined experimentally under various boundary conditions. For concrete under the double condition, the risk of deterioration due to carbonation was not severe. However, it was found that the carbonation of concrete could significantly accelerate chloride penetration. As a result, chloride penetration in combination with carbonation is a serious cause of deterioration of concrete.

A Study on the Corrosion Fatigue Characteristics of Ion-nitrided SCM4 Steel in Rotationg Bending (이온질화처리한 SCM4 강의 회전굽힘 부식피로 특성에 관한 연구)

  • Lee, Du-Yong;Woo, Chang-Gi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.1
    • /
    • pp.75-84
    • /
    • 1989
  • This paper deals with the effect of $N_2$ and $H_2$gas mixture ratio and ion-nitriding time in the corrosion fatigue fracture behavior of ion-nitrided SCM4 steel with notch subject to rotary bending stress. The specimens were treated rapid water cooling after ion-nitriding at $500^{\circ}C$ Torr for 1 hour and 3 hours in gas mixtures of 80% $N_2$and 50% $N_2$. The fatigue limit and the fracture strength of corrosion fatigue depended on $N_2$gas quantity and ion-nitriding time. The ion-nitrided specimens showed about 88 .approx. 158% increase in the fracture strength of corrosion fatigue in $10^6$ cycles than non-nitrided specimens. The corrosion failure is due to corrosion pitting of the surface, and the propargation of cracks started at the surface into the core.

  • PDF

Study on the Sulfide Corrosion to the Internal Surface of Transportation Pipeline

  • Zhang, Yiling;Qi, Ping;Kong, Dehong
    • Corrosion Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.193-196
    • /
    • 2008
  • This article briefly tests and analyzes the sulfur content and the distribution of active sulfur in the crude oil of Kurkow Kazakhstan and Siberian Russian, and discusses the relationship between active sulfur content and total sulfur content, active sulfur and corrosion. At the same time, it measures the open circuit potential of X70 steel and X60 steel witch have been immerged in the above two kind of crude oil for a period of time, discusses the sulfur corrosion to metal.

Corrosion Characteristics of Ti-xTa Alloys with Ta contents (Ta 함량에 따른 Ti-xTa 합금의 부식특성)

  • Kim, H.J.;Choe, H.C.
    • Corrosion Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.50-55
    • /
    • 2013
  • The purpose of this study was to investigate corrosion characteristics of Ti-xTa alloys with Ta contents. Ti-xTa alloys used as samples (x=30, 40%) were arc-melted under argon atmosphere of 99.9% purity. Ti-xTa alloys were homogenized for 12hr at $1000^{\circ}C$ and then water quenched. The surface characteristics of Ti-xTa alloys were investigated using optical microscopy (OM) and X-ray diffractometer (XRD). The anodic corrosion behaviors of the specimens were examined through potentiodynamic, potentiostatic and galvanostatic test in 0.9 % NaCl solution at $36.5{\pm}1^{\circ}C$. After corrosion test, the surface characteristics of Ti-xTa alloys were investigated using OM. The microstructure of Ti-Ta alloy showed the beta structure with Ta content. The corrosion resistance of Ti alloy was improved by increasing Ta content and the corrosion morphology of Ti-Ta alloy showed that the site attacked by chloride ion decreased from the active to passive region with Ta content. Potential of Ti-40Ta alloy increased as time increased, whereas, current density of Ti-40Ta alloy decreased as time increased compared to Ti-30 alloy.

High-Temperature Corrosion Characteristics of T22 and T92 Steel in SO2-Containing Gas at 650 ℃ (650 ℃의 SO2 가스 환경 하에서 T22와 T92 강의 고온 부식특성)

  • Jung, Kwang-Hu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.285-291
    • /
    • 2019
  • In this study, the corrosion characteristics of T22 and T92 steel were investigated in 6O2 + 16CO2 + 2SO2 gas environment at 650 ℃. Corrosion characteristics were characterized by weight gain, oxide layer thickness, scanning electron microscope, optical microscope, energy dispersive X-ray spectroscopy, and X-ray diffraction. T22 and T92 steel tended to stagnate oxide layer growth over time. Oxidation kinetics were analyzed using the data of oxide layer thickness, and a regression model was presented. The regression model was significantly acceptable. The corrosion rate between the two steels through the regression model showed significant difference. The T92 steel was approximately twice as large as the time exponent and showed very good corrosion resistance compared to the T22 steel. In both steels, the oxide layer mainly formed a Fe-rich oxide layer composed of hematite (Fe2O3), magnetite (Fe3O4), and spinel (FeCr2O4). Sulfide segregation occurred in the oxide layer due to SO2 gas. However, the locations of segregation for the T22 and T92 steel were different.

Study on Corrosion Characteristics and Stress Corrosion Cracking of the Weldment for HT-60 Steel in Synthetic Seawater

  • Na, Eui-Gyun;Koh, Seung-Ki;Oh, Seok-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.152-158
    • /
    • 2000
  • The contents of this paper include the evaluation of corrosion characteristics and the behaviour of stress corrosion cracking (SCC) for the weldment and post weld heat treatment (PWHT) specimen and parent of HT -60 steel using a slow strain rate test (SSRT) in synthetic seawater. Corrosion characteristics were obtained from the polarization curves by potentiostat, and SCC phenomena were evaluated through the parameters such as reduction of area and time to failure by comparing the experimental results in corrosive environment with those obtained in air. Corrosion rate of the weldment was the fastest, followed by parent and PWHT specimen. SCC phenomena between the weldment of HT-60 steel and synthetic seawater were shown. Besides, SCC was dependent upon the pulling speed greatly. Maximum severity of SCC was obtained at a speed of $10^{-6}mm/min$, whereas SCC could not be seen almost at $10^{-4}mm/min$. The resistance to SCC for PWHT specimen was improved considerably compared that of the weldment at $10^{-6}mm/min$. In case of SCC failure, it was verified from SEM examination that brittle mode and lots of pits could be seen at the fractured region near the surface of the specimen.

  • PDF

A Study On the Corrosion Tendency of Bottom Plates and Corrosion Prevention Measures in Hazmat Tanks (위험물저장탱코밑판의 부식 성향분석 및 부식예방 방안에 관한 연구)

  • Choi, Jeong Soo;Ro, Kyung Jin
    • Journal of the Society of Disaster Information
    • /
    • v.4 no.1
    • /
    • pp.138-152
    • /
    • 2008
  • The most important factor in the maintenance of chemical industry facilities is related with deterioration and corrosion. Leakage of hazardous materials is likely to occur because the confirmation and maintenance of bottom plates are very difficult while the bottom corrosion of the massive hazmat-storage facilities is most dangerous especially. As a result of the analysis of the corrosion locations, areas, usage condition of 287 hazmat-storage tanks on this syudy, it is concluded that the main external corrosion factors are the inflow of moisture and the materials inducing corrosion in the air such as sodium chloride and the main internal corrosion factors are corrosion react caused by stay of seawater, sulfur and moisture in hazmat for a long time without appropriate discharges. It is anticipated that the corrosion of bottom plates can be restrained effectively by establishing the proper measures for the each corrosion cause.

  • PDF

An Investigation of Mild Steel with Nitrogen-containing Inhibitor in Hydrochloric Acid

  • Horng, Y.T.;Tsai, Yi-Liang;Tu, Ching-Fang;Lee, Chien-Ming;Wei, F.I.;Shih, H.C.
    • Corrosion Science and Technology
    • /
    • v.2 no.5
    • /
    • pp.233-237
    • /
    • 2003
  • Pickling inhibitors can be used to form an adsorbed layer on the metal surface to hinder the discharge of H^+$ and dissolution of metal ions. Nitrogen-containing inhibitors were selected as corrosion inhibitors for mild steel (MS) in pickling acid process. In this study, the addition of inhibitor, the pickling temperatures and the pickling times were the parameters to investigate the effects on the inhibition efficiency (IE) for MS by using weight loss measurement. Preliminary results show that the IE increased with the increase in pickling time from 10 minutes to 60 minutes, and the IE also increased with the increase in temperature at room temperature and $40^{\circ}C$. At the higher temperature. the IE values are higher and almost independent with the pickling time. Furthermore, the potentiodynamic polarization, open circuit corrosion potential-time and corrosion current-time studies show that nitorgen-containing inhibitor behaves predominantly as cathodic polarization. The roughness test and SEM investigation are also studied in this paper.

Evaluation of Corrosion Protection for Epoxy and Urethane Coating by EIS under Various Cyclic Corrosion Tests

  • Hyun, Jonghun;Shon, Minyoung
    • Corrosion Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.95-100
    • /
    • 2011
  • Protective coatings play an important role in the protection of metallic structures against corrosive environment. The main function of anticorrosive coating is to prevent the materials from corrosive agents, such as water, oxygen and ions. In the study, the corrosion protection properties of urethane and epoxy coating systems were evaluated using EIS methods exposed to the corrosion acceleration test such as Norsok M501, Prohesion and hygrothermal cyclic test. AFM analysis of the coating systems was carried out to monitor the change of roughness of coatings. Urethane coating system was more stable than the epoxy coating under given cyclic conditions. Water uptake into the urethane coatings was less than that into the epoxy coating. The urethane coating system showed better corrosion protection than epoxy coating system based on the changes of the impedance modulus at low frequency region with exposure time. Consequently, the corrosion protection properties of the epoxy and urethane coatings was well correspond with their surface roughness changes and water uptakes.