• Title/Summary/Keyword: time-temperature control

Search Result 2,360, Processing Time 0.031 seconds

A Study on Temperature Process Control of Electric Furnace (전기로 온도공정제어에 관한 연구)

  • 오진석;김윤식;오세준;최순만;신명철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.3
    • /
    • pp.311-318
    • /
    • 1997
  • In this paper, a controller with monitoring functions is proposed for controlling temperature of an electric furnace system. The controller includes holding and ramp control functions, and the control program for the temperature process monitor of the electric furnace. For this purpose, the implementation and performance of auto tuning algorithms in a computer¬based controller is studied in relation to control of a nonlinear electric furnace system which is characterized with large time delay. The communicator of a control and detection signals, between the controller and the electric furnace is implemented by an I/O data card. Experiments for the practical electric furnace are performed to illustrate the performance of the proposed controller.

  • PDF

An Implementation for Near-Optimal Set Point Control for Central Cooling Systems (중앙냉방시스템의 준최적 설정점제어기법 구현에 관한 연구)

  • Baek, Seung-Jae;Song, Jae-Yeob;Ahn, Byung-Cheon;Joo, Yong-Duk;Kim, Jin
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.46-51
    • /
    • 2007
  • The near-optimal control algorithm for central cooling system has been developed for minimizing energy consumption while maintaining the comfort of indoor thermal environment in terms of the environmental variables such as time varying indoor cooling load and outdoor temperatures. The optimal set-points of control parameters with near-optimal control are supply air temperature and chilled water temperature. This study has been done by using LapVIEW program with PID control in order to analyze the central cooling system energy saving.

  • PDF

The Seasonal Microbiological Quality Assessment of Kimbap(seaweed roll) Production flow in Foodservice facilities for Univ. students - HACCP model - (대학생 대상 급식시설의 김밥 생산과정에 따른 계절별 미생물적 품질평가)

  • 이혜상;류승연
    • Korean journal of food and cookery science
    • /
    • v.14 no.4
    • /
    • pp.367-374
    • /
    • 1998
  • The purpose of this study was to evaluate the microbiological quality of, and to assure the hygienic safety of, the kimbap production in the university foodservice facilities in accordance with the HACCP (Hazard Analysis Critical Control Point) Program. The time-temperature relationship and the microbiological quality (specifically, total plate count and coliform bacteria count) were assessed to find the critical control point (CCP) during each of the production phases. The average of the daily longest duration time of the kimbap at the facilities was 23.4 hours in summer, while 29.6 hours in winter. In the purchasing phase of the raw materials, the microbiological quality of laver, fish paste, carrot and cucumber in summer was not at an acceptable level according to the standard set by the Natick research center, especially the number of TPC and the coliform level of laver was higher than the threshold level. In the refrigerator storage phase, the temperature of the carrot was 7.4$^{\circ}C$. This temperature is far exceeding the standard so that the microbiological counts was increased by the 2 log cycle during the average storage time of 17 hours or more. In the preparation phase, the temperature of the blanching is too low compared to the standard. In the holding phase before serving, its time-temperature relationship was out of the FDA food code standard both in winter and summer. In the sewing phase, the number of microbiological count was higher than the threshold level in summer while that in winter was up to standard. According to the Harrigan and McCance standard, the number of microbiological count of the utensils was higher than the threshold level in summer while that in winter was up to standard.

  • PDF

Temperature Control for LED Lamps Using RF Communication (RF통신을 이용한 LED 조명의 온도제어)

  • Choi, Hyeung-Sik;Shin, Hee-Young;Oh, Ji-Youn;Lee, Sang-Seop
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.10
    • /
    • pp.759-765
    • /
    • 2012
  • In this paper, a temperature control for LED (light emitting diode) lamp using a cooling fan is studied. An efficient temperature control scheme for the LED lamp using the fan wind at the lowest sound noise is studied. For the study, after measurement of the minimum sound noise of the fan and related temperature of the LED lamp through tests, experiments on temperature control of the LED lamp using the fan with various size of heat sinks was performed. To reduce the fan sound noise, a method of reducing the operation time with optimal size of the heat sink was studied. Also, a control of LED lamps using RF communication was studied.

Evaluation of Control Efficacy of Biocontrol Agent, Epicoccosorus nematosporus on Eleocharis kuroguwai in the Field

  • Hong, Yeon-Kyu;Cho, Jae-Min;Uhm, Jae-Youl;Lee, Bong-Choon;Hyun, Jong-Nae;Hwang, Jae-Bok;Kim, Soon-Chul
    • The Plant Pathology Journal
    • /
    • v.19 no.2
    • /
    • pp.97-101
    • /
    • 2003
  • This study was conducted to determine the efficacy of Epicoccosorus nematosporus for the control of Eleocharis kuroguwai and to evaluate the meteorological factors which affect weeding efficacy in field conditions for three years (1996-1998). The best time to control E. kuroguwai with E. nematosporus as a biological control agent in the field was in July, when temperature ranged from 20.4 to $23.4^{\circ}C$; the surface wetness duration was 12.6-16.1 hours, and application time of 6:00 p.m. and 8:00 p.m.; and weeding efficacy was 81-90%. On 10 June 1996 in Milyang area, where the field experiments were performed, mean temperature was $16.5^{\circ}C$ with 11.3 hours of dew duration. Meanwhile, on 20 Aug. 1996 the temperature was $21.3^{\circ}C$ with 15.4 hours of dew duration. During these periods, the weeding efficacy was recorded at 61.8 and 60.8%, respectively. Time required for complete plant death was 25.8 and 25.6 days at application times 10 June and 20 Aug., respectively. At the time of application on 7,18, and 27 July 1996, mean temperature was 20.4-$23.4^{\circ}C$ with 12.6-16.5 hours of dew duration. The weeding efficacies of these periods were very hi일 with 81.4-90.8%. Three years of field observations from 1996 to 1998 showed that infection in the field can occur at any time through the summer season, although total infection rates vary between months and between years. In 1996, plant infection rapidly increased from 56% on 30 June, 82.4% on 15 July, 94.6% on 15 August, and 92.8% on 15 September under favorable meteorological conditions such as minimum temperature of $17.6^{\circ}C$ and maximum temperature of $27.1^{\circ}C$, with 86% relative humidity and 977.5 mm of rainfall during E. kuroguwai growing season. However, in 1997, the disease incidence was very low because of unfavorable weather conditions brought about by the hot temperature and the low amount of rainfall at 321.5 mm. Disease progress was slow from 24.4% on 30 June to 49.2% at the end of the growing season.

Predictive Model of Micro-Environment in a Naturally Ventilated Greenhouse for a Model-Based Control Approach (자연 환기식 온실의 모델 기반 환기 제어를 위한 미기상 환경 예측 모형)

  • Hong, Se-Woon;Lee, In-Bok
    • Journal of Bio-Environment Control
    • /
    • v.23 no.3
    • /
    • pp.181-191
    • /
    • 2014
  • Modern commercial greenhouse requires the use of advanced climate control system to improve crop production and to reduce energy consumption. As an alternative to classical sensor-based control method, this paper introduces a model-based control method that consists of two models: the predictive model and the evaluation model. As a first step, this paper presents straightforward models to predict the effect of natural ventilation in a greenhouse according to meteorological factors, such as outdoor air temperature, soil temperature, solar radiation and mean wind speed, and structural factor, opening rate of roof ventilators. A multiple regression analysis was conducted to develop the predictive models on the basis of data obtained by computational fluid dynamics (CFD) simulations. The output of the models are air temperature drops due to ventilation at 9 sub-volumes in the greenhouse and individual volumetric ventilation rate through 6 roof ventilators, and showed a good agreement with the CFD-computed results. The resulting predictive models have an advantage of ensuring quick and reasonable predictions and thereby can be used as a part of a real-time model-based control system for a naturally ventilated greenhouse to predict the implications of alternative control operation.

Verification of the HACCP System in School Foodservice Operations - Focus on the Microbiological Quality of Foods in Heating Process and After-Heating Process - (학교급식소의 HACCP 시스템 적합성 검증 -가열조리 및 가열조리 후처리 공정의 미생물적 품질평가를 중심으로-)

  • 전인경;이연경
    • Journal of Nutrition and Health
    • /
    • v.36 no.10
    • /
    • pp.1071-1082
    • /
    • 2003
  • The objective of this study was to evaluate and improve the microbiological quality of HACCP application in school foodservice operations. The microbiological quality of foods and utensils were evaluated two times at each critical control point (CCP) with 3M petrifilm in five Daegu elementary schools. Two processes were evaluated: Heating process and after-heating process. The CCPs of the heating process were receiving, cooking and serving temperatures. The CCPs of the after-heating process were personal hygiene, cross contamination avoidance and serving temperature. After the first experiment, 31 employees of five schools were classroom educated, trained on-site, and pre- and post-tested on HACCP-based sanitation with the goal of improving the microbiological quality of the foodservice. Scores representing knowledge of holding, thawing, washing, food temperature, sanitizing and food-borne illness increased after education. In the heating process, internal food temperatures in the first and second experiments were higher than 74$^{\circ}C$, the holding temperature in the first experiment was less than 6$0^{\circ}C$. In the second experiment, the serving temperature improved to a satisfactory level. The microbiological quality in the second experiment improved by decreasing the time from cooking to serving. In the after-heating process, the ingredients were boiled before being cut in the first experiment. In the second experiment, ingredients were cut before being boiled, improving microbiological quality. Also in the second experiment, cooking just before serving food improved its microbiological quality through time-temperature control. These results strongly suggest it is essential to measure microbiological quality regularly and to educate employees on HACCP continuously, especially time-temperature control and cross contamination avoidance in order to improve foodservice quality.

Remote Temperature Control System using a Zigbee Communication (지그비 통신을 이용한 원격 온도제어 시스템)

  • Park, Yang-Jae
    • Journal of Digital Convergence
    • /
    • v.14 no.4
    • /
    • pp.259-265
    • /
    • 2016
  • In this paper, a remote control system capable of monitoring and controlling the temperature of a refrigerator in real time using the ZigBee communication technology is developed. The developed system provides 24-hour surveillance function including temperature maintenance and it is able to determine monitored data from a remote location and to change the setting of the temperature value. In case the value is out of the setting, it is designed for administrators to verify the problem and take action, sending alarms to management server and the emergency to a preset administrator via SMS. Applying this system to refrigerators storing commercial, medical, and experimental material, the real time status such as temperature and malfunction of refrigerator can be managed up to 16 SZM(Slave Zigbee Module) by only one MZM(Master Zigbee Module).

Development of Thixoextrusion Process for Light Alloys - Part 1. Microstructural Control of Light Alloys for Thixoextrusion (경량합금 반용융 압출 기술 개발 - Part 1. 반융용 압출을 위한 조직제어)

  • Kim, Shae-K.;Yoon, Young-Ok;Jang, Dong-In;Jo, Hyung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.26 no.5
    • /
    • pp.211-216
    • /
    • 2006
  • The study for thixoextrusion process of 7075, 7003 Al wrought alloys and AZ31 Mg wrought alloy was carried out with respect to reheating rate, isothermal holding temperature and time with an emphasis to the effect of homogenization on thixotropic micro-structures during the partial remelting, especially in the low liquid fraction ($f_L<0.2$). The liquid fraction and average grain size with respect to reheating profile such as reheating rate, isothermal holding temperature and time were almost uniform. It is considered very useful for thixoextrusion in terms of process control such as billet temperature control and actual extrusion time. Micro-structural controls of 7075, 7003 Al wrought alloys and AZ31 Mg wrought alloy before and after homogenization were available and thixotropic microstructures were obtained in both specimens.

A novel ECB mode using control of tilt angle for nematic liquid crystal on polyimide surface (폴리이미드 표면에서의 네마틱 액정의 틸트 제어를 이용한 새로운 ECB 모드)

  • Hwang, Jeoung-Yeon;Kim, Kang-Woo;Jeong, Youn-Hak;Kim, Young-Hwan;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.116-119
    • /
    • 2004
  • In this paper, we have improved a novel (ECB) mode using tilt angle in the unique condition by hot-plate equipment. The new control of tilt angle for nematic liquid crystal (NLC) with negative and positive dielectric anisotropy on the rubbed homeotropic polyimide (PI) using baking method by Hot-plate equipment was investigated. LC tilt angle decreased with increasing baking temperature and time. Especially, the low LC tilt angle of positive type NLC $({\Delta}n>0)$ on the rubbed homeotropic PI surface by increasing temperature and time was measured. The EO characteristics of the novel ECB mode using control of tilt angle on the homeotropic surface than that of conventional OCB cell can be improved. We suggest that the developed the Novel ECB cell using control of tilt angle on the homeotropic surface is a promising technique for the achievement of a fast response time and a high contrast ratio.

  • PDF