• 제목/요약/키워드: time-resolved spectroscopy

검색결과 102건 처리시간 0.04초

The Orientation of CO in Heme Proteins Determined by Time-Resolved Mid-IR Spectroscopy: Anisotropy Correction for Finite Photolysis of an Optically Thick Sample

  • Lim, Man-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권6호
    • /
    • pp.865-872
    • /
    • 2002
  • A systematic way of determining the equilibrium orientation of carbon monoxide (CO) in heme proteins using time-resolved polarized mid-IR spectroscopy is presented. The polarization anisotropy at pump-probe delay time of zero in the limit of zero photolysis and the angular distrbution function of CO are required to obtain the equilibrium orientation of CO. An approach is developed for determining the polarization anisotropy in the zero-photolysis limit from the anisotropy measured under finite photolysis conditions in an optically thick sample where the fraction of molecules photolyzed decreased as the pump pulse passes through and is absorbed by the sample. This approach is verified by measuring the polarization anisotropy of CO of carbonmonoxy myoglobin at various levels of photolysis. This method can be readily applied to other photoselection experiments determining precise angle between transition dipoles.

QUANTITATIVE MONITORING OF TISSUE OXYGENATION BY TIME-RESOLVED SPECTROSCOPY

  • Yamashita, Yutaka;Oda, Motoki;Ohmae, Etsuko;Tsuchiya, Yutaka
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.2101-2101
    • /
    • 2001
  • Near-infrared spectroscopy is now being used in clinical diagnosis as a non-invasive monitor of tissue oxygenation state. However, due to lack of the optical pathlength information within tissues, it is still difficult to quantitate the hemoglobin concentration with present CW techniques. Time-resolved spectroscopy (TRS), which measures temporal profiles of emerging light from tissues, enables to estimate the pathlength distribution within tissues by converting time to distance. Consequently, quantitative measurement of tissue oxygenation is possible by analyzing the data with optical diffusion equation 1) or our Microscopic Beer-Lambert law2). Time-Resolved Spectroscopy System : TRS-1O3) Our TRS-10 system consists of a three-wavelength (759, 797, 833 nm) PLP as pulsed light source, a high speed PMT with high sensitivity and three signal-processing circuits for time-resolved measurement (CFD/TAC, A/D converter and histogram memory). Optical pulse train consisting of 759, 797 and 833nm is generated by PLP at 5㎒ repetition rate and irradiated a sample through a single optical fiber. The diffuse-reflected light from the sample is collected by a bundle fiber and then detected by the PMT for single photon measurement. After being amplified by a following fast amplifier, the electrical signals for each wavelength are picked out by CFD/TAC module. Then, a signal processing circuit integrated the TRS data for each wavelength individually. The simultaneous TRS measurement for three wavelengths achieved without any optical or mechanical switch. Experiment and Results Input and detection fibers of TRS-10 were attached at the human forehead with a fiber separation of 3cm. TRS measurements were continuously performed for about 20 minutes including 2 minutes hyper ventilation. It was observed that the total hemoglobin concentration was decreasing during the hyper ventilation and recovered until 2 minutes after hyper ventilation. On the other hand, the deoxy-hemoglobin concentration began to increase after hyper ventilation and had its peak at around 2 minute later, showing 502 drop from 75% to 60% due to inhibition of breathing by performing hyper ventilation. The results showed that this system might be able to quantitate the concentrations of oxy- and deoxy-hemoglobin in the human brain.

  • PDF

BBO 결정을 이용한 피코초 영역에서 시간 분해 분광학 연구 (Study of a time-resolved spectroscopy using BBO crystal in pico--second time domain)

  • 이승묵;조기호;황성태;정창수;이범구
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2002년도 하계학술발표회
    • /
    • pp.90-91
    • /
    • 2002
  • 강한 펄스 레이저가 렌즈에 의해 투명한 매질 속에 집광되면 가시광선 영역에서부터 적외선 영역에 걸친 넓은 파장대의 빛이 발생하게 되는데 이것을 White-Light Continuum이라고 한다. 비선형 결정인 $\beta$-BBO에 의해서도 넓은 영역의 백색광을 발생시킬 수 있다. 이러한 펄스 백색광은 Time-resolved spectroscopy에서의 Probe beam과 다양한 파장대의 펄스 레이저 발생 및 증폭을 위한 Seed pulse 등으로 응용되고 있다. (중략)

  • PDF

Time Resolved Infrared Spectroscopy of Electro-optic Switching of 5CB

  • Jang, Won-Gun
    • Journal of Information Display
    • /
    • 제5권1호
    • /
    • pp.34-40
    • /
    • 2004
  • Time resolved infrared IR absorption spectroscopy is carried out to investigate the dynamics of electric field induced reorientation of the biphenyl molecular core and alkyl tail sub-fragments of the nematic liquid crystal 5CB (4-pentyl-4-cyano-biphenyl). The planar to homeotropic transition for high pre-tilt planar aligned cells, is studied for switching times ranging from 200 ${\mu}sec$ down to 80 ${\mu}sec$, the latter a factor of 1000 times faster than any previous nematic IR study. The reorientation rates of the core and tail are found to be the same to within experimental error and scale inversely with applied field squared, as expected for the balance of field and viscous torques. Thus any molecular conformation change during switching must relax on a shorter time scale. A simple model shows that no substantial differences exist between the reorientational dynamics of the tails and cores on the time scales longer than on the order of 10 ${\mu}s$.

Structural Dynamics of Myoglobin Probed by Femtosecond Infrared Spectroscopy of the Amide Band

  • Kim, Seong-Heun;Jin, Geun-Young;Lim, Man-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권10호
    • /
    • pp.1470-1474
    • /
    • 2003
  • The dynamics of the tertiary conformation of myoglobin (Mb) after photolysis of carbon monoxide was investigated at 283 K solution by probing amide I and II bands using femtosecond IR absorption spectroscopy. Time-resolved spectra in the amide region evolve with 6-12 ps time scale without noticeable subpicosecond dynamics. The spectra measured at 100 ps delay after photolysis is similar to the difference FTIR spectrum at equilibrium. Time-resolved spectra of photoexcited Mb evolve modestly and their amplitudes are less than 8% of those of photolyzed MbCO, indicating that thermal contribution to the spectral evolution in the amide region is negligible. These observations suggest that the conformational relaxation ensuing photolysis of MbCO be complex and the final deoxy protein conformation have been substantially formed by 100 ps, probably with 6- 12 ps time constant.

Excitation and Emission Properties of Adsorbed U(VI) on Amorphous Silica Surface

  • Jung, Euo Chang;Kim, Tae-Hyeong;Kim, Hee-Kyung;Cho, Hye-Ryun;Cha, Wansik
    • 방사성폐기물학회지
    • /
    • 제18권4호
    • /
    • pp.497-508
    • /
    • 2020
  • In the geochemical field, the chemical speciation of hexavalent uranium (U(VI)) has been widely investigated by performing measurements to determine its luminescence properties, namely the excitation, emission, and lifetime. Of these properties, the excitation has been relatively overlooked in most time-resolved laser fluorescence spectroscopy (TRLFS) studies. In this study, TRLFS and continuous-wave excitation-emission matrix spectroscopy are adopted to characterize the excitation properties of U(VI) surface species that interact with amorphous silica. The luminescence spectra of U(VI) measured from a silica suspension and silica sediment showed very similar spectral shapes with similar lifetime values. In contrast, the excitation spectra of U(VI) measured from these samples were significantly different. The results show that distinctive excitation maxima appeared at approximately 220 and 280 nm for the silica suspension and silica sediment, respectively.

Solvent effect on the excited state of stilbene dendrimers bearing phenylacetylene groups

  • Nishimura, Yoshinobu;Arai, Tatsuo
    • Rapid Communication in Photoscience
    • /
    • 제3권4호
    • /
    • pp.85-87
    • /
    • 2014
  • We studied the characteristics of emissive state of the first (p-G1) and second (p-G2) generation of phenylacetylene dendrimers bearing stilbene as a core by using time-resolved fluorescence spectroscopy in cyclohexane (c-Hex) and N, N-dimethylformide (DMF), which are nonpolar and polar solvents, respectively. Time-dependent red-shift of emission spectra p-G2 both in c-Hex and DMF was observed in comparison with p-G1. Besides, the time constant of red-shift of spectra was found to be larger in DMF than in c-Hex. This indicates that the emissive state of p-G2 has a polar character in DMF as a result of charge delocalization from core to peripheral dendrons followed by stabilization of emissive state.