Browse > Article

Time Resolved Infrared Spectroscopy of Electro-optic Switching of 5CB  

Jang, Won-Gun (Korea Photonics Technology Institute (KOPTI))
Publication Information
Abstract
Time resolved infrared IR absorption spectroscopy is carried out to investigate the dynamics of electric field induced reorientation of the biphenyl molecular core and alkyl tail sub-fragments of the nematic liquid crystal 5CB (4-pentyl-4-cyano-biphenyl). The planar to homeotropic transition for high pre-tilt planar aligned cells, is studied for switching times ranging from 200 ${\mu}sec$ down to 80 ${\mu}sec$, the latter a factor of 1000 times faster than any previous nematic IR study. The reorientation rates of the core and tail are found to be the same to within experimental error and scale inversely with applied field squared, as expected for the balance of field and viscous torques. Thus any molecular conformation change during switching must relax on a shorter time scale. A simple model shows that no substantial differences exist between the reorientational dynamics of the tails and cores on the time scales longer than on the order of 10 ${\mu}s$.
Keywords
FT-IR spectroscopy; dipole absorption; 5CB nematic LC; reorientational dynamics; hydro carbon tail & biphenyl core of LC;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Nakano, T. Yokoyama, and H. Toriumi, Appl. Spectrosc. 47, 1354 (1993)   DOI   ScienceOn
2 S. V. Shilov, S. Okretic, and H. W. Siesler, Vib. Spectrosc. 9, 57 (1995)   DOI   ScienceOn
3 N. Katayama, M. A. Czarnecki, M. Satoh, T. Watanabe, and Y. Ozaki, Appl. Spectrosc. 51, 4 (1997)
4 Nissan Chemical Co. RN768 polyimide
5 K. M. Booth, J. Nash, and H. J. Coles, Meas. Sci. Tech. 3, 843 (1992)   DOI   ScienceOn
6 This excludes the penetration layers at the surface of thickness ${\xi}=\;{\nu}K/{\Delta}{\varepsilon}\;E^2$ which at the fields employed here are of negligible thickness
7 T. Urano and H. Hamaguchi, Appl. Spectrosc. 47, 2108 (1993)   DOI   ScienceOn
8 A. Kocot, J. K. Vij, and T. S. Perova, Adv. Chem. Phys. 113, 203 (2000)   DOI
9 S. V. Shilov, H. Skupin, F. Kremer, E. Gebhard, and R. Zentel, Liq. Cryst. 22, 203 (2000)   DOI   ScienceOn
10 H. Sugisawa, H. Toriumi, and H. Watanabe, Mol. Cryst. Liq. Cryst. Sci. Tech. Sect. A 214, 11 (1992)
11 P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2 nd ed. (Oxford University Press, Oxford, 1991)
12 R. A. Palmer, Spectroscopy (Amsterdam) 8, 26 (1993)
13 M. A. Czarnecki, N. Katayama, Y. Ozaki, M. Satoh, K. Yoshino, T. Watanabe, and T. Yanagi, Appl. Spectrosc. 47, 1383 (1993)
14 W. Uhmann, A. Becker, C. Taran, and F. Siebert, Appl. Spectrosc. 45, 390 (1991)   DOI
15 J. de Bleijser, L. H. Leyte-Zuiderweg, J. C. Leyte, P. C. M. van Woerkom, and S, J, Picken, Appl. Spectrosc. 50, 167 (1996)   DOI
16 S. V. Shilov, H. Skupin, F. Kremer, T. Wittig, and R. Zentel, Phys. Rev. Lett. 79,1686 (1997)   DOI   ScienceOn
17 K. Huang and G. G. Fuller, Liq. Cryst. 25, 745 (1998)   DOI   ScienceOn
18 V. G. Gregoriou, J. L. Chao, H. Toriumi, and R. A. Palmer, Chern. Phys. Lett. 179,491 (1991)   DOI   ScienceOn
19 DEI HV 1000, Directed Energy, Inc. Fort Collins, CO, USA.
20 Liq. Cryst. 26, 1 (1999)   DOI   ScienceOn
21 H. Takanashi, J. E. Maclennan, and N. A. Clark, Jpn. J. Appl. Phys. 37, 2587(1998)   DOI
22 T. Urano and H. Hamaguchi, Chem. Phys. Lett. 195, 287 (1992)   DOI   ScienceOn
23 H. Toriumi, H. Sugisawa, and H. Watanabe, Jpn. J. Appl. Phys. 27, L935 (1988)   DOI