• Title/Summary/Keyword: time-keeping wheel

검색결과 6건 처리시간 0.019초

A STUDY ON THE EAST/WEST STATION KEEPING PLANNING CONSIDERING WHEEL OFF-LOADING

  • Lee, Sang-Cherl;Park, Bong-Kyu;Kim, Bang-Yeop;Ju, Gwang-Hyeok;Yang, Koon-Ho
    • Proceedings of the KSRS Conference
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.263-266
    • /
    • 2006
  • Now, on the developing COMS(Communication, Ocean and Meteorological Satellite) has solar panel on the South panel only. Therefore, the wheel off-loading has to be performed periodically to reduce a induced momentum energy by a asymmetric solar panel. One of two East/West station keeping maneuver to correct simultaneously longitude and eccentricity, orbit corrections may be performed during one of the two wheel off-loading manoeuvres per day to get enough observation time for meteorological and ocean sensor. In this paper, we applied a linearized orbit maneuver equation to acquire maneuver time and delta-V. Nonlinear simulation for the station keeping is performed and compared with general station keeping strategy for fuel reduction.

  • PDF

A Study on the East/West Station Keeping Planning Considering Wheel Off-Loading (휠오프로딩을 고려한 동서 위치유지 기동 계획 연구)

  • 이상철;주광혁;김방엽;박봉규;박영웅
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제34권9호
    • /
    • pp.60-66
    • /
    • 2006
  • Now, on developing COMS(Communication, Ocean and Meteorological Satellite) has solar panel on the south panel only. Therefore, the wheel off-loading has to be performed periodically to reduce a induced momentum energy by a asymmetric solar panel. One of two East/West station keeping maneuver to correct simultaneously longitude and eccentricity, orbit corrections may be performed during one of the two wheel off-loading manoeuvres per day to get enough observation time for meteorological and ocean sensor. In this paper, we applied a linearized orbit maneuver equation to acquire maneuver time and delta-V. Nonlinear simulation for the station keeping is performed and compared with general station keeping strategy for fuel reduction.

OPERATIONAL MODEL OF TIME-KEEPING SYSTEMS OF HEUMGYEONGGAK-NU (흠경각루 시보시스템의 작동모델)

  • KIM, SANG HYUK;YUN, YONG-HYUN;MIHN, BYEONG-HEE;LEEM, BYONG GUEN;YOON, MYUNG KYOON;LEEM, BYONG SI
    • Publications of The Korean Astronomical Society
    • /
    • 제34권3호
    • /
    • pp.31-40
    • /
    • 2019
  • We study the internal structure under the artificial mountain of Heumkyeonggak-nu, a Korean water-powered clock in the early Joseon dynasty. All the puppets on the artificial mountain are driven by the rotational force generated by the water wheel at their designated time. We design a model that work with three parts of the artificial mountain. At the upper part of the artificial mountain to the east, west, north and south, there are four puppets called the Four Mystical Animal Divinity and four ladies called the Jade Lady respectively. The former rotates a quarter every double hour and the latter rings the bell every hour. In the middle part of this mountain is the timekeeping platform with four puppets; the Timekeeping Official (Hour Jack), the Bell-, Drum-, and Gong-Warriors. The Hour Jack controls time with three warriors each hitting his own bell, drum, and gong, respectively. In the plain there are 12 Jade Lady puppets (the lower ladies) combined with 12 Oriental Animal Deity puppets. In his own time a lady doll pops out of the hole and her animal doll gets up. Two hours later, the animal deity lies down and his lady hides in the artificial plain. These puppets are regularly moved by the signal such as iron balls, bumps, levers, and so on. We can use balls and bumps to explain the concept of the Jujeon system. Iron balls were used to manipulate puppets of the timekeeping mechanism in Borugak-nu, another Korean water-powered clock in Joseon dynasty, which was developed earlier than Heumgyeonggak-nu. According to the North Korea's previous study (Choi, 1974), it is obvious that bumps were used in the internal structure of Heumgyeonggak-nu. In 1669, The armillary clock made by Song, I-young was also utilized bumps. Finally we presented mock-ups of three timekeeping systems.

Evaluation Technology for the Improvement of Brake Performance and Friction Coefficient of Tread Brake Shoe (답면 브레이크 슈의 마찰계수와 제동성능향상을 위한 평가기술)

  • Choi Kyung-Jin;Lee Dong-Hyung;Lee hisung;Song Mun-Suk;Shin You-Jung
    • Proceedings of the KSR Conference
    • /
    • 한국철도학회 2003년도 추계학술대회 논문집(III)
    • /
    • pp.377-382
    • /
    • 2003
  • In tread braking of freight cars, braking force is produced by the friction between the wheel and the braking shoe. Friction coefficients such as the brake power, weight variation and brake shoe types should be sensitively treated as the design parameters. The conditions of the car, empty and weighted, should also be taken into consideration in brake force design and the control of brake force has some limitations in terms of the brake system design so that the brake materials selection should be considered as important measures to solve that difficulties. Friction characteristics of brake materials should remain within the range of maximum and minimum value and the friction performance should remain stable regardless of braking time and temperature. This study presented an experimental evaluation method to secure optimum braking performance by keeping safe braking effect and braking distance by the friction coefficient of the brake shoe of the freight cars.

  • PDF

Evaluation Technology for Brake Performance of Tread Brake Shoe (답면 브레이크 슈의 제동성능 평가 기법)

  • Choi Kyung-Jin;Lee Hi-Sung
    • Tribology and Lubricants
    • /
    • 제22권2호
    • /
    • pp.87-92
    • /
    • 2006
  • In tread brake of freight cars, brake force is produced by the friction between the wheel and the brake shoe. Friction coefficients associated with the brake power, weight variation and brake shoe types should be sensitively treated as the design parameters. The conditions of the car, empty and loaded, should also be taken into consideration in brake force design and the control of brake force has some limitations in terms of the brake system design so that the brake friction materials selection should be considered as important measures to solve that difficulties. Friction characteristics of brake friction materials should remain within the range of maximum and minimum value and the friction performance should remain stable regardless of brake time and temperature. This study presented an experimental evaluation method to secure optimum brake performance by keeping safe brake effect and brake distance by the friction coefficient of the brake shoe of the freight cars.

Operational Validation of the COMS Satellite Ground Control System during the First Three Months of In-Orbit Test Operations (발사 후 3개월간의 궤도 내 시험을 통한 통신해양기상위성 관제시스템의 운용검증)

  • Lee, Byoung-Sun;Kim, In-Jun;Lee, Soo-Jeon;Hwang, Yoo-La;Jung, Won-Chan;Kim, Jae-Hoon;Kim, Hae-Yeon;Lee, Hoon-Hee;Lee, Sang-Cherl;Cho, Young-Min;Kim, Bang-Yeop
    • Journal of Satellite, Information and Communications
    • /
    • 제6권1호
    • /
    • pp.37-44
    • /
    • 2011
  • COMS(Chollian) satellite which was launched on June 26, 2010 has three payloads for Ka-band communications, geostationary ocean color imaging and meteorological imaging. In order to make efficient use of the geostationary satellite, a concept of mission operations has been considered from the beginning of the satellite ground control system development. COMS satellite mission operations are classified by daily, weekly, monthly, and seasonal operations. Daily satellite operations include mission planning, command planning and transmission, telemetry processing and analysis, ranging and orbit determination, ephemeris and event prediction, and wheel off-loading set point parameter calculation. As a weekly operation, North-South station keeping maneuver and East-West station keeping maneuver should be performed on Tuesday and Thursday, respectively. Spacecraft oscillator updating parameter should be calculated and uploaded once a month. Eclipse operations should be performed during a vernal equinox and autumnal equinox season. In this paper, operational validations of the major functions in COMS SGCS are presented for the first three month of in-orbit test operations. All of the major functions have been successfully verified and the COMS SGCS will be used for the mission operations of the COMS satellite for 7 years of mission life time and even more.