• Title/Summary/Keyword: time-frequency analysis

Search Result 4,787, Processing Time 0.028 seconds

Study on FOWT Structural Design Procedure in Initial Design Stage Using Frequency Domain Analysis (주파수 영역 해석을 활용한 부유식 해상풍력 플랫폼 초기 구조설계 절차 연구)

  • Ikseung Han;Yoon-Jin Ha;Kyong-Hwan Kim
    • Journal of Wind Energy
    • /
    • v.14 no.1
    • /
    • pp.29-36
    • /
    • 2023
  • The analysis of the floating offshore wind turbine platform is based on the procedures provided by the IEC including the International Classification Society, which recommends the analysis in the time domain. But time-domain simulation requires a lot of time and resources to solve tens of thousands of DLCs. This acts as a barrier in terms of floating structure development. For final verification, it requires very precise analysis in the time domain, but from an initial design point of view, a simplified verification procedure to predict the quantity of materials quickly and achieve relatively accurate results is crucial. In this study, a structural design procedure using a design wave applied in the oil and gas industries is presented combined with a conservative turbine load. With this method, a quick design spiral can be rotated, and it is possible to review FOWTs of various shapes and sizes. Consequently, a KRISO Semi-Submersible FOWT platform was developed using a simplified design procedure in frequency-domain analysis.

Sound Signal Analysis Using the Time-Frequency Representations (시주파수 표현법을 이용한 소리신호의 분석)

  • Iem, Byeong-Gwan
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.893-898
    • /
    • 2019
  • Time-frequency representations are methods to display the magnitude or energy density of a signal on the two dimensional plane of both time and frequency. They are useful in analyzing the characteristics of time-varying signals. Music is a typical time-varying signal, and it can be analyzed by time-frequency representations. Recently, it is popular to change the sound quality by attaching a safety sounder to an instrument. It is performed to improve perception subjectively by spending little cost and modifying sound quality. In time domain, it is difficult to notify the difference between music signals with and without the sounder. But, it is easy to find the difference in frequency domain or in time-frequency domain. In this paper, the music signal from a flute with sounder is analyzed both in the frequency domain and in the time-frequency domain. It is confirmed that the frequency components in the mid-frequency range of 500~2500 are reinforced.

Principal component analysis in the frequency domain: a review and their application to climate data (주파수공간에서의 주성분분석: 리뷰와 기상자료에의 적용)

  • Jo, You-Jung;Oh, Hee-Seok;Lim, Yaeji
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.3
    • /
    • pp.441-451
    • /
    • 2017
  • In this paper, we review principal component analysis (PCA) procedures in the frequency domain and apply them to analyze sea surface temperature data. The classical PCA defined in the time domain is a popular dimension reduction technique. Extending the conventional PCA to the frequency domain makes it possible to define PCA in the frequency domain, which is useful for dimension reduction as well as a feature extraction of multiple time series. We focus on two PCA methods in the frequency domain, Hilbert PCA (HPCA) and frequency domain PCA (FDPCA). We review these two PCAs in order for potential readers to easily understand insights as well as perform a numerical study for comparison with conventional PCA. Furthermore, we apply PCA methods in the frequency domain to sea surface temperature data on the tropical Pacific Ocean. Results from numerical experiments demonstrate that PCA in the frequency domain is effective for the analysis of time series data.

Time-frequency domain characteristics of intact and cracked red sandstone based on acoustic emission waveforms

  • Yong Niu;Jinguo Wang;Yunjin Hu;Gang Wang;Bolong Liu
    • Geomechanics and Engineering
    • /
    • v.34 no.1
    • /
    • pp.1-15
    • /
    • 2023
  • This study conducts uniaxial compression tests on intact and single crack-contained rocks to investigate the time-frequency domain characteristics of acoustic emission (AE) signals monitored during the deformation failure process. A processing approach, short-time Fourier transform (STFT), is performed to obtain the evolution characteristics of time-frequency domain of AE signals. The AE signal modes at different deformation stages of rocks are different. Five modes of AE signal are observed during the cracking process of rocks. The evolution characteristics of time-frequency domain of AE signals processed by STFT can be utilized to evaluate the damage process of rocks. The difference of time-frequency domain characteristics between intact and cracked rocks is comparatively analyzed. The distribution characteristics of frequency changing from a single band-shaped cluster to multiple band-shaped clusters can be regarded as an early warning information of damage and failure of rocks. Meanwhile, the attenuation of frequency enables the exploration of rock failure trends.

A Study on the Method for Dynamic Response Analysis in Frequency Domain of an Offshore Wind Turbine by Linearization of Equations of Motion for Multibody (다물체계 운동 방정식 선형화를 통한 해상 풍력 발전기 동적 거동의 주파수 영역 해석 방법에 관한 연구)

  • Ku, Namkug;Roh, Myung-Il;Ha, Sol;Shin, Hyun-Kyoung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.1
    • /
    • pp.84-92
    • /
    • 2015
  • In this study, we describe a method to analysis dynamic behavior of an offshore wind turbine in the frequency domain and expected effects of the method. An offshore wind turbine, which is composed of platform, tower, nacelle, hubs, and blades, can be considered as multibody systems. In general, the dynamic analysis of multibody systems are carried out in the time domain, because the equations of motion derived based on the multibody dynamics are generally nonlinear differential equations. However, analyzing the dynamic behavior in time domain takes longer than in frequency domain. In this study, therefore, we describe how to analysis the system multibody systems in the frequency domain. For the frequency domain analysis, the non-linear differential equations are linearized using total derivative and Taylor series expansions, and then the linearized equations are solved in time domain. This method was applied to analysis of double pendulum system for the verification of its effectiveness, and the equations of motion for the offshore wind turbine was derived with assuming that the wind turbine is rigid multibody systems. Using this method, the dynamic behavior analysis of the offshore wind turbine can be expected to take less time.

The Characteristic Analysis of VVVf Type High Frequency Inverter considering Dead Time (Dead Time을 고려한 VVVF형 고주파 인버어터의 특성해석)

  • Oh, Seung-Hoon;Bae, Sang-Jun;Min, Byoung-Jae;Lee, Dal-Hae;Choi, Sang-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.698-700
    • /
    • 1993
  • This paper describes characteristic analysis of VVVf type high-frequency considering dead time. Static power conversion are now used in a great variety of application including induction heating, high-frequency generation, DC/DC power converter, etc. In the circuit analysis, an offer circuit was compared with safety operating region and steady state characteristics considering dead time.

  • PDF

Analysis of the Characteristic of Railroad(level-crossing) Accident Frequency (철도 건널목 사고의 발생빈도 특성분석 연구)

  • Park, Jun-Tae;Kang, Pal-Moon;Park, Sung-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.2
    • /
    • pp.76-81
    • /
    • 2014
  • Railroad traffic accident consists of train accident, level-crossing accident, traffic death and injury accident caused by train or vehicle, and it is showing a continuous downward trend over a long period of time. As a result of the frequency comparison of train accidents and level-crossing accidents using the railway accident statistics data of Railway Industry Information Center, the share of train accident is over 90% in the 1990s and 80% in the 2000s more than the one of level-crossing accidents. In this study, we investigated time series characteristic and short-term prediction of railroad crossing, as well as seasonal characteristic. The analysis data has been accumulated over the past 20 years by using the frequency data of level-crossing accident, and was used as a frequency data per month and year. As a result of the analysis, the frequency of accident has the characteristics of the seasonal occurrence, and it doesn't show the significant decreasing trend in a short-term.

An efficient seismic analysis technique for PCSG assembly using sub-structuring method and homogenization method

  • Gyogeun Youn;Wanjae Jang;Gyu Mahn Lee;Kwanghyun Ahn;Seongmin Chang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2120-2130
    • /
    • 2024
  • This study significantly reduced the seismic analysis time of PCSG assembly by introducing a reduced model using homogenization and sub-structuring methods. The homogenization method was applied to the primary and secondary micro-channel sheets, and the sub-structuring method was applied to the PCSG module sets. Modal analysis and frequency response analysis were then performed to validate the accuracy of the reduced model. The analysis results were compared with the full model and it was confirmed that the reduced model provided almost the same analysis results as the full model. To verify the computational efficiency of the reduced model, the computational time was then compared with the full model, and it was confirmed that the modal analysis time was reduced by 3.42 times and the frequency response analysis time was reduced by 4.59 times.

Processing Time and Traffic Capacity Analysis for RFID System Using LBT-Random Searching Scheme (LBT-Random Searching 방식을 채용한 RFID 시스템의 트래픽 처리 시간 및 용량 해석)

  • Hwang, In-Kwan;Lim, Yeon-Jun;Pyo, Cheol-Sig
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9A
    • /
    • pp.822-829
    • /
    • 2005
  • In this paper, a processing time and trafnc capacity analysis algorithm for RFID system using LBT-Random Searching scheme is proposed. Service time, carrier sensing time, additional delay time required for contiguous frequency channel occupancy, and additional delay time required for the contiguous using the same frequency channel are considered and the processing delay and frequency channel capacity are analyzed for the steady state operation of the system. The simulation results showing maximum capacity of the system and explaining the accuracy of the algorithm are provided.

Analysis and Measurement of a HDD Spindle Motor Runout (컴퓨터 하드 디스크 드라이브 스핀들 모터 런아웃 측정 및 해석)

  • 장건희;김동균
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.29-35
    • /
    • 1997
  • This research presented a frequency analysis method to analyze NRRO in a computer hard disk drive. RRO was proved to be the harmonics of rotational frequency. The frequency components of NRRO is the subtraction of the harmonics from TIR in frequency domain, so that NRRO in time domain can be obtained by Fourier inverse transformation of NRRO in frequency domain. This method can make the experiments simple without the index signal indispensable to time domain analysis. This research also shows that NRRO is caused by the defect frequencies of ball bearing. Even though the excitation force of ball bearing is independent of the rotational speed, the amplitude of NRRO is magnified near the resonance frequencies of the spindle motor. NRRO in axial direction is almost twice bigger than that in radial direction, because the spindle motor has smaller stiffness in axial direction.

  • PDF