• Title/Summary/Keyword: time-domain simulations

Search Result 296, Processing Time 0.021 seconds

ICI Cancellation of OFDM System with Multiple Frequency offsets (직교 주파수 분할 다중화 시스템에서 다중 주파수 옵셋에 의한 채널간 간섭 제거기법)

  • Won, Yu-Jun;Seo, Bo-Seok
    • Journal of Broadcast Engineering
    • /
    • v.15 no.2
    • /
    • pp.217-223
    • /
    • 2010
  • In this paper, an interchannel interference (ICI) cancellation method is proposed for multiple frequency offsets in orthogonal frequency division multiplexing (OFDM) systems. When several same signals are received from different transmitters simultaneously, multiple frequency offsets may occur at the receiver because of the frequency difference of the oscillators of the two transmitters and the receiver. This causes degradation of system performance because OFDM systems are very sensitive to the frequency offsets. In this paper, we propose a method to eliminate the effect of the multiple frequency offsets for OFDM systems. The method is accomplished in two steps: compensation of the frequency offset in the time domain and subsequent cancellation of the ICI in the frequency domain. Through computer simulations, we verify the effectiveness of the proposed ICI cancellation method.

Parallel M-band DWT-LMS Algorithm to Improve Convergence Speed of Nonlinear Volterra Equalizer in MQAM System with Nonlinear HPA (비선형 HPA를 가진 M-QAM 시스템에서 비선형 Volterra 등화기의 수렴 속도 향상을 위한 병렬 M-band DWT-LMS 알고리즘)

  • Choi, Yun-Seok;Park, Hyung-Kun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.7C
    • /
    • pp.627-634
    • /
    • 2007
  • When a higher-order modulation scheme (16QAM or 64QAM) is applied to the communications system using the nonlinear high power amplifier (HPA), the performance can be degraded by the nonlinear distortion of the HPA. The nonlinear distortion can be compensated by the adaptive nonlinear Volterra equalizer using the low-complexity LMS algorithm at the receiver. However, the LMS algorithm shows very slow convergence performance. So, in this paper, the parallel M-band discrete wavelet transformed LMS algorithm is proposed in order to improve the convergence speed. Throughout the computer simulations, it is shown that the convergence performance of the proposed method is superior to that of the conventional time-domain and transform-domain LMS algorithms.

Modulation Recognition of BPSK/QPSK Signals based on Features in the Graph Domain

  • Yang, Li;Hu, Guobing;Xu, Xiaoyang;Zhao, Pinjiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3761-3779
    • /
    • 2022
  • The performance of existing recognition algorithms for binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK) signals degrade under conditions of low signal-to-noise ratios (SNR). Hence, a novel recognition algorithm based on features in the graph domain is proposed in this study. First, the power spectrum of the squared candidate signal is truncated by a rectangular window. Thereafter, the graph representation of the truncated spectrum is obtained via normalization, quantization, and edge construction. Based on the analysis of the connectivity difference of the graphs under different hypotheses, the sum of degree (SD) of the graphs is utilized as a discriminate feature to classify BPSK and QPSK signals. Moreover, we prove that the SD is a Schur-concave function with respect to the probability vector of the vertices (PVV). Extensive simulations confirm the effectiveness of the proposed algorithm, and its superiority to the listed model-driven-based (MDB) algorithms in terms of recognition performance under low SNRs and computational complexity. As it is confirmed that the proposed method reduces the computational complexity of existing graph-based algorithms, it can be applied in modulation recognition of radar or communication signals in real-time processing, and does not require any prior knowledge about the training sets, channel coefficients, or noise power.

A Method of Sound Segmentation in Time-Frequency Domain Using Peaks and Valleys in Spectrogram for Speech Separation (음성 분리를 위한 스펙트로그램의 마루와 골을 이용한 시간-주파수 공간에서 소리 분할 기법)

  • Lim, Sung-Kil;Lee, Hyon-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.8
    • /
    • pp.418-426
    • /
    • 2008
  • In this paper, we propose an algorithm for the frequency channel segmentation using peaks and valleys in spectrogram. The frequency channel segments means that local groups of channels in frequency domain that could be arisen from the same sound source. The proposed algorithm is based on the smoothed spectrum of the input sound. Peaks and valleys in the smoothed spectrum are used to determine centers and boundaries of segments, respectively. To evaluate a suitableness of the proposed segmentation algorithm before that the grouping stage is applied, we compare the synthesized results using ideal mask with that of proposed algorithm. Simulations are performed with mixed speech signals with narrow band noises, wide band noises and other speech signals.

A Study on Characteristics of Ground-Penetrating Radar Signals for Detection of Buried Pipes (지하 매설관 탐지를 위한 지하탐사레이다 신호의 특성에 관한 연구)

  • Hyun, Seung-Yeup
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.1
    • /
    • pp.42-48
    • /
    • 2017
  • Characteristics of ground-penetrating radar(GPR) signals for detecting buried pipes are investigated numerically. Transmitting and receiving parts of a GPR system, a subsurface soil and a plastic pipe filled with a dielectric material are modeled by using the finite-difference time-domain(FDTD) method. FDTD simulations for observing aspects of GPR signals are performed as a function of the diameter of the pipe and the permittivity of the filling material in the pipe. GPR signals scattered by a dielectric filled pipe appear as a superposition of two waves, such as the specular wave from the front convex surface of the pipe and the axial wave from the rear concave surface of the pipe. We show that the amplitude, the polarity, the delay time of two waves depend on the size of the pipe and the permittivity of the filling material in the pipe.

Applying TID-PSS to Enhance Dynamic Stability of Multi-Machine Power Systems

  • Mohammadi, Ramin Shir;Mehdizadeh, Ali;Kalantari, Navid Taghizadegan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.5
    • /
    • pp.287-297
    • /
    • 2017
  • Novel power system stabilizers (PSSs) have been proposed to effectively dampen low frequency oscillations (LFOs) in multi-machine power systems and have attracted increasing research interest in recent years. Due to this attention, recently, fractional order controllers (FOCs) have found new applications in power system stability issues. Here, a tilt-integral-derivative power system stabilizer (TID-PSS) is proposed to enhance the dynamic stability of a multi-machine power system by providing additional damping to the LFOs. The TID is an extended version of the classical proportional-integral-derivative (PID) applying fractional calculus. The design of the proposed three-parameter tunable TID-PSS is systematized as a nonlinear time domain optimization problem in which the tunable parameters are adjusted concurrently using a modified group search optimization (MGSO) algorithm. An integral of the time multiplied squared error (ITSE) performance index is considered as the objective function. The proposed stabilizer is simulated in the MATLAB/SIMULINK environment using the FOMCON toolbox and the dynamic performance is evaluated on a 3-machine 6-bus power system. The TID-PSS is compared with both classical PID-PSS (PID-PSS) and conventional PSS (CPSS) using eigenvalue analysis and time domain simulations. Sensitivity analyses are performed to assess the robustness of the proposed controller against large changes in system loading conditions and parameters. The results indicate that the proposed TID-PSS provides the better dynamic performance and robustness compared with the PID-PSS and CPSS.

A New Endpoint Detection Method Based on Chaotic System Features for Digital Isolated Word Recognition System (음성인식을 위한 혼돈시스템 특성기반의 종단탐색 기법)

  • Zang, Xian;Chong, Kil-To
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.5
    • /
    • pp.8-14
    • /
    • 2009
  • In the research field of speech recognition, pinpointing the endpoints of speech utterance even with the presence of background noise is of great importance. These noise present during recording introduce disturbances which complicates matters since what we just want is to get the stationary parameters corresponding to each speech section. One major cause of error in automatic recognition of isolated words is the inaccurate detection of the beginning and end boundaries of the test and reference templates, thus the necessity to find an effective method in removing the unnecessary regions of a speech signal. The conventional methods for speech endpoint detection are based on two linear time-domain measurements: the short-time energy, and short-time zero-crossing rate. They perform well for clean speech but their precision is not guaranteed if there is noise present, since the high energy and zero-crossing rate of the noise is mistaken as a part of the speech uttered. This paper proposes a novel approach in finding an apparent threshold between noise and speech based on Lyapunov Exponents (LEs). This proposed method adopts the nonlinear features to analyze the chaos characteristics of the speech signal instead of depending on the unreliable factor-energy. The excellent performance of this approach compared with the conventional methods lies in the fact that it detects the endpoints as a nonlinearity of speech signal, which we believe is an important characteristic and has been neglected by the conventional methods. The proposed method extracts the features based only on the time-domain waveform of the speech signal illustrating its low complexity. Simulations done showed the effective performance of the Proposed method in a noisy environment with an average recognition rate of up 92.85% for unspecified person.

Study on the Indoor Acoustic Field Analysis using the Blast Wave Model (폭발파 모델을 이용한 실내 음장 해석에 관한 연구)

  • Song, Kee-Hyeok;Kang, Woo-Ram;Lee, Duck-Joo;Kim, Young-Nam
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.142-150
    • /
    • 2015
  • A portable recoilless guided missile generates a strong back blast and impulsive noise at the nozzle when it launches. In the case of indoor operations, the hazard of the blast noise from a recoilless weapon increases due to limited indoor spaces. Also, the noise levels determine the operational feasibility of a weapon; therefore, it is important to predict the blast noise levels distribution in the indoor space in advance. In addition, computational fluid dynamics (CFD) method generally used for fluid related simulations, requires high computing cost and time to simulate the whole domains. The domain includes both blast wave region and large and various indoor space region. Therefore, an efficient method for predicting the far-field noise level within a short time should be developed. This paper describes an analysis model for predicting the indoor noise distributions by considering the shape effect of the building within a short time. A new developed blast wave model was implemented using the noise source. Additionally, noise reflections at the closed surfaces such as walls and noise transmissions at the opened surfaces such as windows and doors were considered in calculating the noise levels. The predicted noise levels were compared with the experimental data obtained from the indoor launch test to validate the reliability of program.

Channel Estimation scheme for IEEE 802.11a system based on MIMO-OFDM systems (IEEE 802.11a 기반의 MIMO-OFDM 시스템을 위한 채널 추정 기법)

  • 안치준;안재민
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.6A
    • /
    • pp.640-650
    • /
    • 2004
  • Channel estimation schemes are proposed for Multiple Input-Multiple output Orthogonal Frequency Division Multiplexing(MIMO-OFDM) systems based on the physical layer specification of the IEEE 802.1 la. By combining the space-time block coding(STBC)/ space-frequency block coding(SFBC) techniques with the transform domain interpolation, the proposed algorithms achieve more accurate channel coefficients for the MIMO channels such that improve the BER performance. The performance improvements of the proposed algorithms are evaluated by simulations under the various multipath fading channel environments and various transmission rates.

Suboptimum detection of space-time trellis coded OFDM over slowly fading channel (느린 페이딩 채널에서 공간-시간 트렐리스 부호화된 OFDM의 준최적 검파)

  • Kim, Young-Ju;Li, Xun;Park, Noe-Yoon;Lee, In-Sung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.12
    • /
    • pp.28-33
    • /
    • 2007
  • We present a space-time trellis coded OFDM system in flow fading channels. Generalized principal ratio combining (GPRC) is also analyzed theoretically in frequency domain. The analysis show that the decoding metric of GPRC include the metrics of maximum likelihood (ML) and PRC. The computer simulations with M-PSK modulation are obtained in frequency flat and frequency selective lading channels. The decoding complexity and simulation running times are also evaluated among the decoding schemes.