• 제목/요약/키워드: time-dependent strain

검색결과 268건 처리시간 0.022초

열간분말단조 공정의 열탄소성 유한요소해석 (Thermo-Elasto-Plastic Finite Element Analysis of Powder Hot Forging)

  • 김형섭
    • 한국분말재료학회지
    • /
    • 제4권2호
    • /
    • pp.83-89
    • /
    • 1997
  • A finite element analysis to solve the coupled thermomechanical problem in the plane strain upsetting of the porous metals was performed. The analysis was formulated using the yield function advanced by Lee and kim and developed using the thermo-elasto-plastic time integration procedure. The density and temperature dependent thermal and mechanical properties of porous metals were considered. The internal heat generation by the plastic deformation and the changing thermal boundary conditions corresponding to the geometry were incorporated in the program. The distributions of the stress, strain, pressure, density and temperature were predicted during the free resting period, deformation period and dwelling period of the forging process.

  • PDF

Long-term deflection prediction in steel-concrete composite beams

  • Lou, Tiejiong;Wu, Sishun;Karavasilis, Theodore L.;Chen, Bo
    • Steel and Composite Structures
    • /
    • 제39권1호
    • /
    • pp.21-33
    • /
    • 2021
  • This paper aims to improve the current state-of-the-art in long-term deflection prediction in steel-concrete composite beams. The efficiency of a time-dependent finite element model based on linear creep theory is verified with available experimental data. A parametric numerical study is then carried out, which focuses on the effects of concrete creep and/or shrinkage, ultimate shrinkage strain and reinforcing bars in the slab. The study shows that the long-term deformations in composite beams are dominated by concrete shrinkage and that a higher area of reinforcing bars leads to lower long-term deformations and steel stresses. The AISC model appears to overestimate the shrinkage-induced deflection. A modified ACI equation is proposed to quantify time-dependent deflections in composite beams. In particular, a modified reduction factor reflecting the influence of reinforcing bars and a coefficient reflecting the influence of ultimate shrinkage are introduced in the proposed equation. The long-term deflections predicted by this equation and the results of extensive numerical analyses are found to be in good agreement.

Stress relaxation effect on uniaxial compressive strength values of a silt type soil

  • Eren Komurlu
    • Geomechanics and Engineering
    • /
    • 제32권5호
    • /
    • pp.495-502
    • /
    • 2023
  • In this study, stress relaxation tests were carried out by keeping silt type soil specimens under different strain levels. Decreases in the stress values with time data was collected to better understand the effect of the strain level on the relaxation properties of soil specimens. In addition, the stress relaxation effect on the uniaxial compressive strength (UCS) values of the specimens was investigated with a series of tests. According to the results obtained from this study, the UCS values of the silt specimens significantly vary as a result of the stress relaxation effect. The UCS values were determined to increase with an increase of relaxation strain level to a threshold value. On the other hand, the UCS values were found to be affected adversely in case of high stress levels at the initiation of the relaxation, which are close to the peak level.

Zr-4의 고온 크리프 및 응력이완 특성에 관한 연구 (A Study on High Temperature Creep and Stress Relaxation Properties of Zr-4)

  • 오세규;박정배;한상덕
    • 수산해양기술연구
    • /
    • 제28권1호
    • /
    • pp.71-78
    • /
    • 1992
  • Zr-4 used for a cladding and an end plug of reactor component has creep deformation under operation at high temperature. Creep is regarded as the time dependent deformation of a material under constant applied stress. Although the major source of the deformation of zirconium component in water-cooled reactors is irradiation creep, the thermal creep may give a rise to significant deformation in reactor component especially at relatively high temperatures and at various constant stresses, and therefore it must be predicted accurately. Stress relaxation is the time dependent change of stress at constant strain and it is a process related intimately to creep. In this paper, the creep behavior and stress relaxation of Zr-4 is examined at the temperature of 50$0^{\circ}C$ that is 40% of the absolute melting temperature of Zr-4 under the stress below yield stress and under the various constant strains. The results obtained are summarized as follows: 1) With an increase of stress, the steady state creep rate increases and the creep rupture time decreases. 2) The steady state creep rate $\varepsilon$(%/s) for the stress $\sigma$sub(c) (kgf/mm super(2)) of Zr-4 increases outstandingly. All the empirical equations computed for Zr-4 increases outstandingly. All the empirical equations computed for Zr-4 are in accord with Norton's model equation($\varepsilon$=K$\sigma$ sub(c) super (n)). The constants of materials computed are as follows: K=3.9881$\times$10 super(-5), n=1.9608 3) The rupture time T sub(r) (hr) decreases linearly with the increase of stress on the log-log scaled graph. The empirical equations computed for Zr-4 are in accord with Bailey's model equation (T sub(r)=K sub(1)$\sigma$sub(c) super(m)). The constants of materials computed are as follows: K sub(1)=1.2875$\times$10 super(16), m=-3.467 4) It seems clear that the strain could be quantitatively dependent on the high temperature creep properties such as creep stress, rupture time, steady state creep rate and total creep rate. It is found that these relationships are linear on the log-log graph. 5) In stress relaxation test, as the critical constant strain that can be allowed to the specimen is larger, stress relaxation becomes more rapid, and as the constant strain is smaller, the stress relaxation becomes slower.

  • PDF

시공단계를 고려한 콘크리트-콘크리트 합성형 PSC 박스거더 교량의 해석 (A Study on the Analysis of PSC Box Girder Bridge Considering Construction Stage in Box Section)

  • 김영진;김병석;강재윤
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표대회 논문집(III)
    • /
    • pp.694-700
    • /
    • 1998
  • PSC box bridge by MSS construction method may not be set at cross section at one step. Web and bottom flange(U member) would be set at first, top flange will be set later with a time lag. In this case, U member and top flange concrete have different strain history. As two different aged section behaves as the composite section, there would happen the redistribution of stress. This is come from time-dependent strain characteristics of concrete itself. In this study, two models are considered, one with considering the set time of cross section and the other without. By performing longitudinal analysis of two models on considering construction stage, the stress differences of two are compared. As the analysis results show a considerable differences in the stresses of cross section between two models, the set time of cross section is needed for rational design f PSC box girder bridge.

  • PDF

NaCl Concentration-Dependent Aminoglycoside Resistance of Halomonas socia CKY01 and Identification of Related Genes

  • Park, Ye-Lim;Choi, Tae-Rim;Kim, Hyun Joong;Song, Hun-Suk;Lee, Hye Soo;Park, Sol Lee;Lee, Sun Mi;Kim, Sang Hyun;Park, Serom;Bhatia, Shashi Kant;Gurav, Ranjit;Sung, Changmin;Seo, Seung-Oh;Yang, Yung-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권2호
    • /
    • pp.250-258
    • /
    • 2021
  • Among various species of marine bacteria, those belonging to the genus Halomonas have several promising applications and have been studied well. However, not much information has been available on their antibiotic resistance. In our efforts to learn about the antibiotic resistance of strain Halomonas socia CKY01, which showed production of various hydrolases and growth promotion by osmolytes in previous study, we found that it exhibited resistance to multiple antibiotics including kanamycin, ampicillin, oxacillin, carbenicillin, gentamicin, apramycin, tetracycline, and spectinomycin. However, the H. socia CKY01 resistance pattern to kanamycin, gentamicin, apramycin, tetracycline, and spectinomycin differed in the presence of 10% NaCl and 1% NaCl in the culture medium. To determine the mechanism underlying this NaCl concentration-dependent antibiotic resistance, we compared four aminoglycoside resistance genes under different salt conditions while also performing time-dependent reverse transcription PCR. We found that the aph2 gene encoding aminoglycoside phosphotransferase showed increased expression under the 10% rather than 1% NaCl conditions. When these genes were overexpressed in an Escherichia coli strain, pETDuet-1::aph2 showed a smaller inhibition zone in the presence of kanamycin, gentamicin, and apramycin than the respective control, suggesting aph2 was involved in aminoglycoside resistance. Our results demonstrated a more direct link between NaCl and aminoglycoside resistance exhibited by the H. socia CKY01 strain.

평면변형압축시험을 이용한 보강토의 시간 의존적 변형 특성 연구 (Time-Dependent Deformation Characteristics of Geosynthetic-Reinforced Soil Using Plane Strain Compression Tests)

  • 유충식;김선빈;이봉원
    • 한국지반공학회논문집
    • /
    • 제21권10호
    • /
    • pp.85-97
    • /
    • 2005
  • 보강토 구조물은 그동안의 다양한 분야에서의 적용을 통해 기존의 옹벽구조물의 대체 공법으로서 그 적용성을 인정받고 있다. 최근 들어 교대 및 철도 시설 등에 적용됨에 따라 단기적인 안정성 이외에 장기적으로 지속하중 혹은 반복하중에 노출됨에 따른 장기거동에 대한 연구의 필요성이 높아가고 있다. 본 연구에서는 이러한 연구의 필요성에 근거하여 보강토체에 발생할 수 있는 장기변형 특성 고찰에 주안점을 두고 우리나라에서 생산되는 지오그리드와 화강풍화토로 형성된 보강토에 대한 지속하중 혹은 반복하중 등 다양한 하중이력에 대한 보강토 구조물의 장기 변형 특성 메카니즘을 평면변형압축(plane strain compression; PSC)시험을 통해 고찰하였다. 그 결과 보강토의 시간 의존적 압축변형은 보강토체에 작용하는 하중 특성뿐만 아니라 보강재의 역학적 특성에도 많은 영향을 받는 것으로 나타났으며, 선행하중을 작용함으로써 시간 의존적 잔류변형을 제어할 수 있는 것으로 분석되었다.

인장하중을 받는 아스팔트 혼합물의 점탄소성 모형의 개발 (Development of ViscoElastoPlastic Continuum Damage (VEPCD) Model for Response Prediction of HMAs under Tensile Loading)

  • ;;서영국;이광호
    • 대한토목학회논문집
    • /
    • 제28권1D호
    • /
    • pp.45-55
    • /
    • 2008
  • 아스팔트 혼합물의 거동을 정확하게 예측하기 위하여 점탄소성 연속체 손상모형(이하 점탄소성 모형)을 개발하였다. 본 논문에서는 인장조건에서 점탄소성 모형의 개발과 4가지 혼합물(일반 밀입도, SBS, CR-TB, Terpolymer)을 이용한 모형의 검증과정을 다루고 있다. 모형 개발을 위해서 실내시험으로 측정한 아스팔트 혼합물의 전체 응답을 점탄성과 점소성 성분으로 구분하여 분석하였다. 점탄성 연속체 손상모형으로는 미세균열이 지배적인 상태에서 아스팔트 혼합물의 시간 의존적 거동을 해석하고, 고온 혹은 저속 하중 조건에서 발생한 영구변형(시간 종속과 비종속 성분을 모두 포함)은 점소성 모형으로 해석하였다. 변형률 분해 원리에 근거하여 각각의 모형을 통합하여 점탄소성 연속체 손상모형(VEPCD)을 개발하였다. 모형의 변수 결정을 위해서 직접인장시험을 수행하고 각각의 혼합물에 대한 선형 점탄성은 동탄성계수와 시간-온도 전이계수 그리고 위상각의 주곡선으로 정의하였다. 개발된 점탄소성 모형의 예측 성능을 평가하기 위하여 두 종류의 실내시험 실시하고 그 결과를 분석하였다 : 1) 단일 변형률 인장 시험, 2) 임의 하중조건을 모사한 피로 시험.

Time-dependent behaviour of interactive marine and terrestrial deposit clay

  • Chen, Xiaoping;Luo, Qingzi;Zhou, Qiujuan
    • Geomechanics and Engineering
    • /
    • 제7권3호
    • /
    • pp.279-295
    • /
    • 2014
  • A series of one-dimensional consolidation tests and triaxial creep tests were performed on Nansha clays, which are interactive marine and terrestrial deposits, to investigate their time-dependent behaviour. Based on experimental observations of oedometer tests, normally consolidated soils exhibit larger secondary compression than overconsolidated soils; the secondary consolidation coefficient ($C_{\alpha}$) generally gets the maximum value as load approaches the preconsolidation pressure. The postsurcharge secondary consolidation coefficient ($C_{\alpha}$') is significantly less than $C_{\alpha}$. The observed secondary compression behaviour is consistent with the $C_{\alpha}/C_c$ concept, regardless of surcharging. The $C_{\alpha}/C_c$ ratio is a constant that is applicable to the recompression and compression ranges. Compared with the stage-loading test, the single-loading oedometer test can evaluate the entire process of secondary compression; $C_{\alpha}$ varies significantly with time and is larger than the $C_{\alpha}$ obtained from the stage-loading test. Based on experimental observations of triaxial creep tests, the creep for the drained state differs from the creep for the undrained state. The behaviour can be predicted by a characteristic relationship among axial strain rate, deviator stress level and time.

Response analysis of soil deposit considering both frequency and strain amplitude dependencies using nonlinear causal hysteretic damping model

  • Nakamura, Naohiro
    • Earthquakes and Structures
    • /
    • 제4권2호
    • /
    • pp.181-202
    • /
    • 2013
  • It is well known that the properties of the soil deposits, especially the damping, depend on both frequency and strain amplitude. Therefore it is important to consider both dependencies to calculate the soil response against earthquakes in order to estimate input motions to buildings. However, it has been difficult to calculate the seismic response of the soil considering both dependencies directly. The author has studied the time domain evaluation of the frequency dependent dynamic stiffness, and proposed a simple hysteretic damping model that satisfies the causality condition. In this paper, this model was applied to nonlinear analyses considering the effects of the strain amplitude dependency of the soil. The basic characteristics of the proposed method were studied using a two layered soil model. The response behavior was compared with the conventional model e.g. the Ramberg-Osgood model and the SHAKE model. The characteristics of the proposed model were studied with regard to the effects of element divisions and the frequency dependency that is a key feature of the model. The efficiency of the model was confirmed by these studies.