• Title/Summary/Keyword: time-dependent strain

Search Result 268, Processing Time 0.035 seconds

Molecular Cloning and Function Analysis of an Anthocyanidin Synthase Gene from Ginkgo biloba, and Its Expression in Abiotic Stress Responses

  • Xu, Feng;Cheng, Hua;Cai, Rong;Li, Lin Ling;Chang, Jie;Zhu, Jun;Zhang, Feng Xia;Chen, Liu Ji;Wang, Yan;Cheng, Shu Han;Cheng, Shui Yuan
    • Molecules and Cells
    • /
    • v.26 no.6
    • /
    • pp.536-547
    • /
    • 2008
  • Anthocyanidin synthase (ANS, leucoanthocyanidin oxygenase), a 2-oxoglutarate iron-dependent oxygenase, catalyzed the penultimate step in the biosynthesis of the anthocyanin class of flavonoids, from the colorless leucoanthocyanidins to the colored anthocyanidins. The full-length cDNA and genomic DNA sequences of ANS gene (designated as GbANS) were isolated from Ginkgo biloba for the first time. The full-length cDNA of GbANS contained a 1062-bp open reading frame (ORF) encoding a 354-amino-acid protein. The genomic DNA analysis showed that GbANS gene had three exons and two introns. The deduced GbANS protein showed high identities to other plant ANSs. The conserved amino acids (H-X-D) ligating ferrous iron and residues (R-X-S) participating in 2-oxoglutarate binding were found in GbANS at the similar positions like other ANSs. Southern blot analysis indicated that GbANS belonged to a multi-gene family. The expression analysis by real-time PCR showed that GbANS expressed in a tissue-specific manner in G. biloba. GbANS was also found to be up-regulated by all of the six tested abiotic stresses, UV-B, abscisic acid, sucrose, salicylic acid, cold and ethylene, consistent with the promoter region analysis of GbANS. The recombinant protein was successfully expressed in E. coli strain with pET-28a vector. The in vitro enzyme activity assay by HPLC indicated that recombinant GbANS protein could catalyze the formation the cyanidin from leucocyanidin and conversion of dihydroquercetin to quercetin, suggesting GbANS is a bifunctional enzyme within the anthocyanidin and flavonol biosynthetic pathway.

Continuous Hydrogen Production by Heterotrophic Growth of Citrobacter amalonaticus Y19 in Trickle Bed Reactor (Citrobacter amalonaticus Y19의 영양종속 성장을 이용한 Trickle Bed Reactor에서의 연속적인 수소생산)

  • Park, Ji-Young;Lee, Tae-Ho;Oh, You-Kwan;Kim, Jun-Rae;Seol, Eun-Hee;Jung, Gyoo-Yeol;Kim, Mi-Sun;Park, Sung-Hoon
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.458-463
    • /
    • 2005
  • [ $H_2$ ] from CO and water was continuously produced in a trickle bed reactor(TBR) using Citrobacter amalonaticus Y19. When the strain C. was cultivated in a stirred-tank reactor under a chemoheterotrophic and aerobic condition, the high final cell concentration of 13 g/L was obtained at 10 hr. When the culture was switched to an anaerobic condition with the continuous supply of gaseous CO, CO-dependent hydrogenase was fully induced and its hydrogen production activity approached 16 mmol/g cell/hr in 60 hr. The fully induced C. amalonaticus Y19 cells were circulated through a TBR packed with polyurethane foam, and the TBR was operated for more than 20 days for $H_2$ production. As gas retention time decreased or inlet CO partial pressure increased, $H_2$ production rate increased but the conversion from CO to $H_2$ decreased. The maximum $H_2$ production rate obtained was 16 mmol/L/hr at the gas retention time of 25 min and the CO inlet partial pressure of 0.4 atm. The high $H_2$ production rate was attributed to the high cell density in the liquid phase circulating the TBR as well as the high surface area of polyurethane foam used as packing material of the TBR.

Development of Natural Antioxidants and Whitening Agents for Cosmeceuticals

  • Kim, Jong-Pyung
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2007.11a
    • /
    • pp.79-92
    • /
    • 2007
  • Oxidative stress have known to be a risk factor for the degenerative processes and closely related to a lot of diseases. It is well established that antioxidants are good in protection and therapeutic means against oxidative damage. There is increasing interest in natural antioxidants and many natural antioxidants have been found and utilized as the possible protection for various diseases and skin aging. We have screened natural antioxidant agents for cosmeceuticals, nutraceuticals, and drugs as therapeutic and preventive means against oxidative stress, and have developed a number of novel antioxidants from various natural sources. A novel melanin synthesis inhibitor, Melanocin A, isolated from the metabolite of a fungal strain Eupenicillium shearii F80695 inhibited mushroom tyrosinase and melanin biosynthesis of B16 melanoma cells with $IC_{50}$ value of 9.0 nM and MIC value of $0.9\;{\mu}M$, respectively. Melanocin A also exhibited potent antioxidant activity by scavenging of DPPH and superoxide anion radicals. UV was found to increase the level of hydrogen peroxides and other reactive oxygen species (ROS) in skin tissues. This increase in ROS may not only alter the structure and function of many genes and proteins directly but may also modulate their expressions through signal transduction pathways and, ultimately, lead to skin damage. We investigated the effect of Melanocin A on UV-induced premature skin aging. Firstly, the effect of Melanocin A on UV-induced matrix metalloproteinase (MMP)-9 expression in an immortalized human keratinocyte cell line, HaCaT in vitro was investigated. Acute UV irradiation induced MMP-9 expression at both the mRNA and protein levels and Melanocin A suppressed this expression in a dose-dependent manner. We then investigated UV-induced skin changes in hairless mice in vivo by Melanocin A. Chronic exposure of hairless mouse dorsal skin to UV increased skin thickness and induced wrinkle formation and the gelatinase activities of MMP-2 and MMP-9. Moreover, Melanocin A significantly suppressed UV-induced morphologic skin changes and MMP-2 and MMP-9 expression. These results show that Melanocin A can prevent the harmful effects of UV that lead to skin aging. Therefore, we suggest that Melanocin A should be viewed as a potential therapeutic agent for preventing and/or treating premature skin aging. Terrein is a bioactive fungal metabolite isolated from Penicillium species. Terrein has a relatively simple structure and can be easily synthesized. However, the biologic effects of terrein are comparatively unknown. We found for the first time that terrein potently inhibit melanin production in melanocytes and has a strong hypopigmentary effect in a spontaneously immortalized mouse melanocyte cell line, Mel-Ab. Treatment of Mel-Ab cells with terrein (10-100 mM) for 4 days significantly reduced melanin levels in a dose-dependent manner. In addition, terrein at the same concentration also reduced tyrosinase activity. We then investigated whether terrein influences the extracellular signal-regulated protein kinase (ERK) pathway and the expression of microphthalmia-associated transcription factor (MITF), which is required for tyrosinase expression. Terrein was found to induce sustained ERK activation and MITF down-regulation, and luciferase assays showed that terrein inhibits MITF promoter activity in a dose-dependent manner. To elucidate the correlation between ERK pathway activation and a decreased MITF transcriptional level, PD98059, a specific inhibitor of the ERK pathway, was applied before terrain treatment and found to abrogate the terrein-induced MITF attenuation. Terrein also reduced the tyrosinase protein level for at least 72 h. These results suggest that terrain reduces melanin synthesis by reducing tyrosinase production via ERK activation, and that this is followed by MITF down-regulation.

  • PDF

Investigation on Applicability of 2400 MPa Strand for Posttensioned Prestressed Concrete Girders (포스트텐션 PSC 거더에 대한 2400 MPa급 강연선의 적용성 분석)

  • Park, Ho;Cho, Jae-Yeol;Kim, Jee-Sang
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.727-735
    • /
    • 2012
  • Recently, a high-strength strand of 2400 MPa was developed using domestic technologies. In 2011, KS D 7002 was revised to cover the newly developed high-strength strands to support their practical usage. Presently, however, discussions and evaluations are not sufficient on the mechanical properties of the strands and their performance in structural members. Also, there were no detailed reviews on the need to revise the current design code for practical use of the high-strength strands. In this study, flexural behavior of a member with the high-strength strands was estimated through sectional analysis and a review and comparison of the domestic and foreign design codes were conducted considering the analysis results. Also, the need for the revision of the design code was discussed. Such discussion especially focused on the estimation of the stress in strand, which related with various issues such as determination methods for yield point of strands, time-dependent loss of prestressing force, estimation of stress in strand at member failure, and net strain limit for ductile failure of member. The discussion revealed that some parts in the design code need a revision and the further studies are required.

Development of mcyB-specific Ultra-Rapid Real-time PCR for Quantitative Detection of Microcystis aeruginosa (Microcystis aeruginosa의 정량을 위한 mcyB 특이 초고속 실시간 유전자 증폭법의 개발)

  • Jung, Hyunchul;Yim, Byoungcheol;Lim, Sujin;Kim, Byounghee;Yoon, Byoungsu;Lee, Okmin
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.1
    • /
    • pp.46-56
    • /
    • 2018
  • A mcyB-specific Ultra-Rapid quantitative PCR was developed for the quantitative detection of Microcystis aeruginosa, which is often a dominant species in green tide. McyB-specific UR-qPCR was optimized under extremely short times of each step in thermal cycles, based on the specific primers deduced from the mcyB in microcystin synthetase of M. aeruginosa. The M. aeruginosa strain KG07 was used as a standard for quantification, after the microscopic counting and calculation by mcyB-specific UR-qPCR. The water samples from the river water with the Microcystis outbreak were also measured by using both methods. The $1.0{\times}10^8$ molecules of mcyB-specific DNA was recognized inner 4 minutes after beginning of UR-qPCR, while $1.0{\times}10^4$ molecules of mcyB-specific templates was detected inner 7 minutes with quantitative manner. From the range of $1.0{\times}10^2$ to $1.0{\times}10^8$ initial molecules, quantification was well established based on $C_T$ using mcyB-specific UR-qPCR (Regression coefficiency, $R^2=0.9977$). Between the numbers of M. aeruginosa cell counting under microscope and calculated numbers using mcyB-specific UR-qPCR, some differences were often found. The reasons for these differences were discussed; therefore, easy compensation method was proposed that was dependent on the numbers of the cell counting. Additionally, to easily extract the genomic DNA (gDNA) from the samples, a freeze-fracturing of water-sample using liquid nitrogen was tested, by excluding the conventional gDNA extraction method. It was also verified that there were no significant differences using the UR-qPCR with both gDNAs. In conclusion, the mcyB-specific UR-qPCR that we proposed would be expected to be a useful tool for rapid quantification and easy monitoring of M. aeruginosa in environmental water.

Study on Production of Poly-γ-Glutamic Acid by Bacillus subtilis CH-10 (Bacillus subtilis CH-10에 의한 폴리감마글루탐산의 생산에 관한 연구)

  • Gu Na-Yeon;Kim Choon-Hee;Kim Byung-Woo;Nam Soo-Wan;Kwon Hyun-Ju;Kim Dong-Eun;Kim Young-Man;Jeon Sung-Jong
    • Journal of Life Science
    • /
    • v.16 no.2 s.75
    • /
    • pp.175-179
    • /
    • 2006
  • A bacterium that produced a large amount of poly-$\gamma$-glutamate (PGA) was isolated from the compost and designated as Bacillus subtilis CH-10. The optimum temperature and pH for PGA production were at $37^{\circ}C$ and 7.5, respectively. The maximum amount of PGA production (18.84 mg/ml) was obtained when it was grown in a medium containing 3% L-glutamate and 5% sucrose at $37^{\circ}C$ with shaking. The result that the L-glutamate significantly induced PGA production indicates that it produces a PGA by the glutamate dependent manner. Some properties of the PGA obtained at different times of cultivation were investigated by SDS-PAGE and ninhydrin analysis. The PGA production was elongated along with cultivation time and maximum amount was achieved at 96 h. Average molecular weight of PGA was estimated to be 1100 kDa by FDNB method.

Laboratory Evaluation of Polysulfide Epoxy Overlay Material for Bridge Deck (교면포장용 폴리설파이드 에폭시재료의 실내물성 평가)

  • Kim, Jun-Hyung;Suh, Young-Chan
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.159-166
    • /
    • 2011
  • This research was performed to evaluate physical properties of polysulfide epoxy overlay material for bridge deck as part of a review for possibility of domestic application of polymer concrete for bridge deck pavement. In order to evaluate strength characteristics, compressive strength, flexural strength and bond strength were tested, and, for durability characteristics, chloride ion penetration resistance and freeze/thaw resistance were tested along with ultraviolet rays impact evaluation. The tests showed that the results met the criteria suggested by the American Concrete Institute in terms of compressive strength, flexural strength and bond strength. However, in terms of the strengths measured at various test temperatures, it was found that the epoxy material was highly dependent on temperature, and, therefore, this should be considered at the time of domestic application of the epoxy material later. Deflection characteristics was checked through flexural strength test and it was found that bridge deck pavement using the epoxy material was excellent compared to bridge deck pavement using asphalt. Furthermore, the results of chloride ion penetration resistance test and freeze/thaw resistance test were also excellent. In the evaluation of ultraviolet rays impact on epoxy slurry mixture, reduction of strain was noticed with increased strength, but the deflection characteristics after exposure to ultraviolet rays was better than the existing acryl polymer concrete. Therefore, it is concluded from the research that the polysulfide epoxy overlay material has the physical properties that are appropriate to pavement of bridge deck.

Determination of Optimized Growth Medium and Cryoprotective Additives to Enhance the Growth and Survival of Lactobacillus salivarius

  • Yeo, Soyoung;Shin, Hee Sung;Lee, Hye Won;Hong, Doseon;Park, Hyunjoon;Holzapfel, Wilhelm;Kim, Eun Bae;Huh, Chul Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.5
    • /
    • pp.718-731
    • /
    • 2018
  • The beneficial effects of lactic acid bacteria (LAB) have been intensively investigated in recent decades with special focus on modulation of the host intestinal microbiota. Numerous discoveries of effective probiotics are driven by a significantly increasing demand for dietary supplements. Consequently, technological advances in the large-scale production and lyophilization are needed by probiotic-related industries for producing probiotic LAB for commercial use. Our study had a dual objective, to determine the optimum growth medium composition and to investigate appropriate cryoprotective additives (CPAs) for Lactobacillus salivarius, and compare its responses with other Lactobacillus species. The one-factor-at-a-time method and central composite design were applied to determine the optimal medium composition for L. salivarius cultivation. The following composition of the medium was established (per liter): 21.64 g maltose, 85 g yeast extract, 1.21 ml Tween 80, 6 g sodium acetate, $0.2g\;MgSO_4{\cdot}7H_2O$, $0.02g\;MnSO_4{\cdot}H_2O$, $1g\;K_2HPO_4$, $1.5g\;KH_2PO_4$, $0.01g\;FeSO_4{\cdot}7H_2O$, and 1 g sodium citrate. A cryoprotective additive combination comprising 10% (w/v) skim milk and 10% (w/v) sucrose supplemented with 2.5% (w/v) sodium glutamate was selected for L. salivarius, and its effectiveness was confirmed using culture-independent methods in the freeze-dried cells of the Lactobacillus strains. In conclusion, the optimized medium enhanced the species-specific cultivation of L. salivarius. On the other hand, the cryoprotective effects of the selected CPA mixture may also be dependent on the bacterial strain. This study highlights the necessity for precise and advanced processing techniques for large-scale production of probiotics in the food and feed industries.

Comparative study on dynamic properties of argillaceous siltstone and its grouting-reinforced body

  • Huang, Ming;Xu, Chao-Shui;Zhan, Jin-Wu;Wang, Jun-Bao
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.333-352
    • /
    • 2017
  • A comparison study is made between the dynamic properties of an argillaceous siltstone and its grouting-reinforced body. The purpose is to investigate how grout injection can help repair broken soft rocks. A slightly weathered argillaceous siltstone is selected, and part of the siltstone is mechanically crushed and cemented with Portland cement to simulate the grouting-reinforced body. Core specimens with the size of $50mm{\times}38mm$ are prepared from the original rock and the grouting-reinforced body. Impact tests on these samples are then carried out using a Split Hopkinson Pressure Bar (SHPB) apparatus. Failure patterns are analyzed and geotechnical parameters of the specimens are estimated. Based on the experimental results, for the grouting-reinforced body, its shock resistance is poorer than that of the original rock, and most cracks happen in the cementation boundaries between the cement mortar and the original rock particles. It was observed that the grouting-reinforced body ends up with more fragmented residues, most of them have larger fractal dimensions, and its dynamic strength is generally lower. The mass ratio of broken rocks to cement has a significant effect on its dynamic properties and there is an optimal ratio that the maximum dynamic peak strength can be achieved. The dynamic strain-softening behavior of the grouting-reinforced body is more significant compared with that of the original rock. Both the time dependent damage model and the modified overstress damage model are equally applicable to the original rock, but the former performs much better compared with the latter for the grouting-reinforced body. In addition, it was also shown that water content and impact velocity both have significant effect on dynamic properties of the original rock and its grouting-reinforced body. Higher water content leads to more small broken rock pieces, larger fractal dimensions, lower dynamic peak strength and smaller elastic modulus. However, the water content plays a minor role in fractal dimensions when the impact velocity is beyond a certain value. Higher impact loading rate leads to higher degree of fragmentation and larger fractal dimensions both in argillaceous siltstone and its grouting-reinforced body. These results provide a sound basis for the quantitative evaluation on how cement grouting can contribute to the repair of broken soft rocks.

Analysis of Seismic Response of the Buried Pipeline with Pipe End Conditions (II) (단부 경계조건을 고려한 매설관의 동적응답 해석 (II))

  • Lee, Byong-Gil;Park, Byung-Ho;Jeong, Jin-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.328-337
    • /
    • 2005
  • This work reports results of our study on the dynamic responses of the buried pipelines both along the axial and the transverse directions under various boundary end conditions. We have considered three cases, i.e., the free ends, the fixed ends, and the fixed-free ends for the axial direction, and three more cases including the guided ends, the simply supported ends, and the supported-guided ends for the transverse direction. In order to investigate the effect of the boundary end conditions for the dynamic responses of the buried pipeline, we have devised a computer program to find the solutions of the formulae on the dynamic responses (displacements, axial strains, and bending strains) under the various boundary end conditions considered in this study. The dynamic behavior of the buried pipelines for the forced vibration is found to exhibit two different forms, a transient response and a steady state response, depending on the time before and after the transfer of a seismic wave on the end of the buried pipeline. The former is identified by a slight change in its behavior before the sinusoidal-shaped seismic wave travels along the whole length of the pipeline whereas the latter by the complete form of a sinusoidal wave when the wave travels throughout the pipeline. The transient response becomes insignificant as the wave speed increases. We have observed a resonance when the mode wavelength matches the wavelength of the seismic wave, where the mode number(k) of resonance for the axial direction is found to be $\overline{\omega}/{\pi}V+1/2$ for the fixed-free ends, $\overline{\omega}/{\pi}V+1$ for the free ends, and $\overline{\omega}/{\pi}V$ for the fixed ends, respectively. By adding 10 more modes to the mode number(k) of resonance, we were able to study all the dynamic responses of the buried pipeline for the axial direction. On the other hand, we have not been able to observe a resonance in the analysis for the transverse direction, because the dynamic responses are found to vanish after the seventh mode. From the results of the dynamic responses at the many points of the pipeline, we have found that the responses appeared to be dependent critically on the boundary end conditions. Such effects are found to be most prominent especially for the maximum values of the displacement and the strain and its position.

  • PDF