• 제목/요약/키워드: time-dependent problems

검색결과 289건 처리시간 0.024초

준비시간(準備時間)이 종속인 다단계(多段階) 생산(生産) 시스템의 집단일정계획(集団日程計劃) (Group Scheduling Problem in Multi - Stage Manufacturing Systems with Dependent Setup time)

  • 노인규;남희열
    • 대한산업공학회지
    • /
    • 제12권2호
    • /
    • pp.33-44
    • /
    • 1986
  • This research is concerned with group scheduling problems in multi-stage manufacturing system with dependent setup time. The objective of the research is to develop and evaluate a heuristic algorithm for determining group sequence and job sequence within each group to minimize total tardiness in multi-stage manufacturing systems with sequence dependent group setup time. The group scheduling heuristic algorithm is developed and evaluated by comparisons with twenty-seven problems with the known optimum solutions and 144,000 random schedules of a large variety problems. The results indicate that the proposed heuristic algorithm gets the same optimum solutions for the problems and also provides the good solutions in comparison with the random schedules of the large variety problems. A numerical example is given to illustrate the heuristic algorithm.

  • PDF

복구조정 활동과 복구조정 후 시간경과에 따라 퇴화하는 작업시간을 갖는 단일기계의 일정계획에 관한 연구 (A Study on Single Machine Scheduling with a Rate-Modifying Activity and Time-Dependent Deterioration After the Activity)

  • 김병수;주철민
    • 경영과학
    • /
    • 제30권1호
    • /
    • pp.15-24
    • /
    • 2013
  • We consider the single machine scheduling problem with a rate-modifying activity and time-dependent deterioration after the activity. The class of scheduling problems with rate-modifying activities and the class of scheduling problems with time-dependent processing times have been studied independently. However, the integration of these classes is motivated by human operators of tasks who has fatigue while carrying out the operation of a series of tasks. This situation is also applicable to machines that experience performance degradation over time due to mal-position or mal-alignment of jobs, abrasion of tools, and scraps of operations, etc. In this study, the integration of the two classes of scheduling problems is considered. We present a mathematical model to determine job-sequence and a position of a rate-modifying activity for the integration problem. Since the model is difficult to solve as the size of real problem being very large, we propose genetic algorithms. The performance of the algorithms are compared with optimal solutions with various problems.

구역 및 시간의존 차량스케쥴링문제 : 차량속도 추정모델과 차량스케쥴링 해법 (Area and Time-Dependent Vehicle Scheduling Problems Travel Speeds Estimation Model and Scheduling Heuristics)

  • 박양병;송성헌
    • 대한산업공학회지
    • /
    • 제22권3호
    • /
    • pp.517-532
    • /
    • 1996
  • The area and time-dependent vehicle scheduling problem(ATVSP) is a generalization of the vehicle scheduling problem in which the travel speed between two locations depends on the passing areas and time of day. We propose a simple model for estimating area and time-dependent travel speeds in the ATVSP that relieves much burden for the data collection and storage problems. A mixed integer nonlinear programming formulation of the ATVSP is presented. We also propose three heuristics for the ATVSP, developed by extending and modifying existing heuristics for conventional vehicle scheduling problems. The results of computational experiments demonstrate that the proposed estimation model performs well and the saving method is the best among the three heuristics.

  • PDF

Maximization in Reliability Design when Stress/Strength has Time Dependent Model of Deterministic Cycle Times

  • Oh, Chung-Hwan
    • 품질경영학회지
    • /
    • 제18권1호
    • /
    • pp.129-147
    • /
    • 1990
  • This study is to refer to the optimization problems when the stress and strength follow the time dependent model, considering a decision making process in the design methodology from reliability viewpoint. Reliability of a component can be expressed and computed if the probability distributions for the stress and strength in the time dependent case are known. The factors which determine the parameters of the distributions for stress and strength random variables can be controlled in design problems. This leads to the problem of finding the optimal values of these parameters subject to resources and design constraints. This paper is to present techniques for solving the optimization problems at the design stage like as minimizing the total cost to be spent on controlling the stress and strength parameters for random variables subject to the constraint that the component must have a specified reliability, alternatively, maximizing the component reliability subject to certain constraints on amount of resources available to control the parameters. The derived expressions and computations of reliability in the time dependent case and some optimization models of these cases are discussed. The special structure of these models is exploited to develop the optimization techniques which are illustrated by design examples.

  • PDF

이동시간의 변화를 고려한 차량경로 문제의 분지평가법을 이용한 최적화 해법 (A Branch-and-price Algorithm for the Vehicle Routing Problem with Time Dependent Travel Times)

  • 이용식;이충목;박성수
    • 대한산업공학회지
    • /
    • 제37권2호
    • /
    • pp.144-152
    • /
    • 2011
  • Most of the models for the vehicle routing problems studied in the literature assumed constant travel times. However, those approaches may give infeasible solutions when traffic congestion causes delays in travel time. To overcome such difficulty, there have been some researches considering the change of the travel time which is called the time dependent vehicle routing problem (TDVRP). TDVRP assumes that the travel time between two locations is not only affected by the distance traveled, but by many other factors including the time of the day. In this paper, we propose a branch-and-price algorithm to solve the TDVRP. The time dependent property of the travel time is dealt with an enumeration scheme with bounding procedures in the column generation procedure identifying a profitable route. The proposed algorithm guarantees the "Non-passing" property to be held in the solutions. The algorithm was tested on problems composed of the Solomon's benchmark instances for 25 and 50 nodes. Computational results are reported.

판재의 성형한계 결정을 위한 시간의존적 방법의 제안 (Proposal of a Time-dependent Method for Determining the Forming Limit of Sheet Metal)

  • 김성곤;김형종
    • 소성∙가공
    • /
    • 제27권2호
    • /
    • pp.115-122
    • /
    • 2018
  • Most domestic and international standards on the forming limit diagram (FLD) including ISO 12004-2, use a 'position-dependent method,' which determines the forming limit from a strain distribution measured on the specimen after necking or fracture. However, the position-dependent method has inherent problems such as the incidence of asymmetry of a strain distribution, the estimation of missing data near fracture, the termination time of test, and the deformation due to the new stress equilibrium after a fracture, which is blamed for causing sometimes a significant lab-to-lab variation. The 'time-dependent method,' which is anticipated to be a new international standard for evaluating the forming limit, is expected to greatly improve these intrinsic disadvantages of the position-dependent method. It is because the time-dependent method makes it possible to identify and accurately determine the forming limit, just before the necking point from the strain data as continuously measured in a short time interval. In this study, we propose a new time-dependent method based on a Gaussian fitting of strain acceleration with the introduction of 'normalized correlation coefficient.' It has been shown in this study that this method can determine the forming limit very stably and gives a higher value, which is in comparison with the results of the previously studied position-dependent and time-dependent methods.

FLOW SHOP SCHEDULING JOBS WITH POSITION-DEPENDENT PROCESSING TIMES

  • WANG JI-BO
    • Journal of applied mathematics & informatics
    • /
    • 제18권1_2호
    • /
    • pp.383-391
    • /
    • 2005
  • The paper is devoted to some flow shop scheduling problems, where job processing times are defined by functions dependent on their positions in the schedule. An example is constructed to show that the classical Johnson's rule is not the optimal solution for two different models of the two-machine flow shop scheduling to minimize makespan. In order to solve the makespan minimization problem in the two-machine flow shop scheduling, we suggest Johnson's rule as a heuristic algorithm, for which the worst-case bound is calculated. We find polynomial time solutions to some special cases of the considered problems for the following optimization criteria: the weighted sum of completion times and maximum lateness. Some furthermore extensions of the problems are also shown.

시간종속VRP의 효율적 해법 설계를 위한 차량통행속도의 분석과 재구성 (Analysis and Reconstruction of Vehicle Speeds to Design an Efficient Time Dependent VRP Heuristic)

  • 문기주;박성미
    • 산업경영시스템학회지
    • /
    • 제35권1호
    • /
    • pp.140-147
    • /
    • 2012
  • Vehicle routing problem is one of the traveling salesman problems with various conditions such as vehicle capacity limits, delivery time windows, as well as time dependent speeds in metropolitan area. In this research hourly vehicle moving speeds information in a typical metropolitan area are analyzed to use the results in the design procedure of VRP heuristic. Quality initial vehicle routing solutions can be obtained with adaption of the analysed results of the time periods with no vehicle speed changes. This strategy makes complicated time dependent vehicle speed simple to solve. Time dependent vehicle speeds are too important to ignore to obtain optimum vehicle routing search for real life logistics systems.

Solving Time-dependent Schrödinger Equation Using Gaussian Wave Packet Dynamics

  • Lee, Min-Ho;Byun, Chang Woo;Choi, Nark Nyul;Kim, Dae-Soung
    • Journal of the Korean Physical Society
    • /
    • 제73권9호
    • /
    • pp.1269-1278
    • /
    • 2018
  • Using the thawed Gaussian wave packets [E. J. Heller, J. Chem. Phys. 62, 1544 (1975)] and the adaptive reinitialization technique employing the frame operator [L. M. Andersson et al., J. Phys. A: Math. Gen. 35, 7787 (2002)], a trajectory-based Gaussian wave packet method is introduced that can be applied to scattering and time-dependent problems. This method does not require either the numerical multidimensional integrals for potential operators or the inversion of nearly-singular matrices representing the overlap of overcomplete Gaussian basis functions. We demonstrate a possibility that the method can be a promising candidate for the time-dependent $Schr{\ddot{o}}dinger$ equation solver by applying to tunneling, high-order harmonic generation, and above-threshold ionization problems in one-dimensional model systems. Although the efficiency of the method is confirmed in one-dimensional systems, it can be easily extended to higher dimensional systems.