• Title/Summary/Keyword: time slip

Search Result 419, Processing Time 0.026 seconds

Simulator for 3 Phase Induction Motor with LCL Filter and PWM Rectifier (LCL 필터와 PWM 정류기를 이용한 3상 유도전동기의 시뮬레이터)

  • Cho, Kwan Yuhl;Kim, Hag Wone
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.861-869
    • /
    • 2020
  • A dynamo set for a high-power induction motor drive is expensive and needs a long time to manufacture. Therefore, the development of a simulator that functions as the induction motor and load equipment is required. A load simulator of an inverter for a high-power three-phase induction motor consists of a reactor and three-phase PWM inverter. Therefore, it cannot simulate the dynamic characteristics of an induction motor and functions only as a load. In this paper, a real-time simulator is proposed to simulate a model of an induction motor and the load characteristics based on an LCL filter and three-phase PWM rectifier for a three-phase induction motor. The currents of a PWM inverter that simulate the stator currents of the motor are controlled by the inductor currents and capacitor voltages of the LCL filter. The capacitor voltages of the LCL filter simulate the induced voltages in the stator windings by the rotating rotor fluxes of the motor, and the capacitor voltages are controlled by the inductor currents and a PWM rectifier. The rotor currents, the stator and rotor flux linkages, the electromagnetic torque, the slip frequency, and the rotor speed are derived from the inverter currents and the motor parameters. The electrical and mechanical model characteristics and the operation of vector control were verified by MATLAB/Simulink simulation.

Development of 3D Dynamic Numerical Simulation Method on a Soil-Pile System (지반-말뚝 시스템에 대한 3차원 동적 수치 모델링 기법 개발)

  • Kim, Seong-Hwan;Na, Seon-Hong;Han, Jin-Tae;Kim, Sung-Ryul;Sun, Chang-Guk;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.5
    • /
    • pp.85-92
    • /
    • 2011
  • The dynamic behavior of piles becomes very complex due to soil-pile dynamic interaction, soil non-linearity, resonance phenomena of soil-pile system and so on. Therefore, the proper numerical simulation of the pile behavior needs much effort and calculation time. In this research, a new modeling method, which can be applied to the conventional finite difference analysis program FLAC 3D, was developed to reduce the calculation time. The soil domain in this method is divided into a near-field region and a far-field region, which is not influenced by the soil-pile dynamic interaction. Then, the ground motion of the far-field is applied to the boundaries of the near-field instead of modeling the far-field region as finite meshes. In addition, the soil non-linearity behavior is modeled by using the hysteretic damping model, which determines the soil tangent modulus as a function of shear strain and the interface element was applied to simulate the separation and slip between the soil and pile. The proposed method reduced the calculation time by as much as one third compared with a usual modeling method and maintained the accuracy of the calculated results. The calculated results by the proposed method showed a good agreement with the prototype pile behavior, which was obtained by applying a similitude law to the 1-g shaking table test results.

Long-Term Behavior of Square CFT Columns under Concentric Load (중심축 하중을 받는 각형 CFT 기둥의 장기거동에 관한 연구)

  • Kwon Seung-Hee;Kim Tae-Hwan;Lee Tae-Gyu;Kim Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.281-290
    • /
    • 2005
  • This paper presents experimental and analytical studies on long-term behavior of square CFT columns under central axial loading. Two loading cases are considered; (1) the load applied only at the inner concrete of the column and (2) the load applied simultaneously on both the concrete and the steel tube. Four specimens of square CFT columns were tested under the two loading cases, and basic creep test for two concrete specimens was performed to find out the creep properties of the inner concrete. Three-dimensional finite element analysis models were established and verified with the experimental results. The verification shows that the prediction for the long-term behavior of actual square CFT columns is possible from the three dimensional finite element modeling considering the bond behavior between steel tube and inner concrete. Also, experimental results and numerical calculations revealed that the bond stress Induced by the confinement pressure as well as the slip between inner concrete and steel tube were increased with time In the first loading case. However, the confinement by the loading Plate was decreased with time while increasing confinement effect by the steel tube was observed over time. In contrast no confinement effects occur in the second loading case.

Behavioral Characteristics Investigation of Rack Structure Depending on Forklift Impact Scenarios and Storage Distributions (지게차 충돌 위치 및 보관물류 분포에 따른 선반구조물의 거동특성분석)

  • Ok, Seung-Yong;Kwon, Oh-Yong;Paik, Shin Won
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.6
    • /
    • pp.49-56
    • /
    • 2013
  • The statistics of recent accidents in warehouses show that a heavy toll of lives were produced by various accidents, e.g. collision, overturn, fall, slip, exposure to harmful substances or environments, etc. Of significant concern amongst them is the collision, especially the collision between forklift and storage rack structure. Accordingly, this study focuses on behavioral characteristics of rack structure subjected to dynamic impact loading of a forklift. For this purpose, time-domain response analysis has been performed on a standard 2-bay six-story rack structure consisting of columns, beams and bracing members with perforated open section. In order to investigate the most critical scenario, the impact loads are applied in both down-aisle and cross-aisle directions, and the impact locations are also varied along the shelves of the palettes. In order to deal with storage distributions, three types of rack structures are further taken into account: original empty rack structure with no storage, half-loaded rack structure and fully-loaded rack structure. The numerical simulation results demonstrate that the dynamic characteristics of the rack structure are significantly dependent on the distribution of the storage goods and its natural period varies from 0.24sec to 1.06sec, approximately 4.4 times. Further, the parametric studies show that the forklift impact is most critical to the safety of the rack structure when it collides either at the base or at the top of the rack structure.

Research of Colonoscope Robot With Rotary Inertia Type Locomotion Mechanism (회전관성형 주행 메커니즘을 가진 내시경 로봇의 연구)

  • Lee, Jaewoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.521-526
    • /
    • 2016
  • This paper suggests a new design that makes use of rotary inertia that can allow autonomous movement of an autonomous colonoscope robot in the colon of a patient as a locomotive mechanism. As commercial colonoscopy causes a lengthy time of pain and discomfort to the patients when colonoscopy patients are reluctant to receive surgery, there is a tendency to avoid the test in the early diagnosis of colorectal cancer. To solve this problem, research has been conducted on the next generation of robotic colonoscopes that can reduce the discomfort and pain by moving autonomously within the colon of the patients. In the driving mechanism utilizing the rotational inertia, a flywheel is driven by a motor to store energy and produce rotational inertia. By the energy stored and released by the flywheel, the stick phenomenon that occurs when the robot is running in the intestine can be overcome effectively. To do this, a controller that can control the velocity of the flywheel and is robust to high frequency noise was designed and implemented. The driving mechanism using the rotational inertia presented here showed that the structure is also effective and the experiment can be run easily compared to another mechanism.

Development of Early-Strength of High-Strength Concrete According to Curing Temperature for Application of System Form (시스템 거푸집 적용을 위한 고강도 콘크리트의 양생온도별 조기강도 발현성상)

  • 김무한;이승훈;강석표;길배수;주지현
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.536-543
    • /
    • 2001
  • Nowadays, with high-stoned and large-sized of structures, high-strength concrete is applicable to various methods. When high-strength concrete is used jointly with system form, seizing on the development of compressive strength at early age is very important in aspect of construction process. Because system form is stripped more faster than ordinary form. But, we have little data of compressive strength before system-form is stripped, and it isn't yet established that decision criterion of the time when system-form is stripped. So this paper deals with the development of compressive strength at early age before system-form is stripped. In this study, the experimental results indicate the boundary of curing temperature and mixing factor that is able to get needful early-strength in the application of slip-form method, and curing temperature must be kept over 15 degrees in winter season.

Operative Treatment for Avulsion Fracture of Base of the Fifth Metatarsal (제5 중족골 기저부 견열 골절의 수술적 치료)

  • Kim, Yong-Chan;Chung, Whan-Yong;Cho, Seong-Jin;Kim, Yong-Sang;Jo, Sung-Kwun
    • Journal of Korean Foot and Ankle Society
    • /
    • v.8 no.1
    • /
    • pp.92-96
    • /
    • 2004
  • Purpose: To analyze the clinical and radiological results of the operative treatment in the avulsion fracture on the base of the fifth metatarsal. Materials and Methods: We studied retrospectively, 11 patients of avulsion fracture on the base of the fifth metatarsal operated and followed over 1 year, from February 2000 to May 2002. There were eight men and three women and the average age was 39 years old. The mean follow up period was 14 months. Ten cases were slip-down and one case was fall from a height injuries. We used the modified Foot Score by Wiener for the clinical evaluation, and analyzed the time of union and state of reduction radiologically. Results: In clinical results, we had ten excellent and one good cases by the modified Foot Score at last follow-up. In radiologic results, the complete bony union was achieved in all cases and the duration of the bony union was 37 days in average. Conclusion: We had good result for the avulsion fractures on the base of the fifth metatarsal treated by the operation. This study shows the operation was recommended for the moderate and severe displacement of the avulsion fractures on the base of the fifth metatarsal.

  • PDF

Behavior of Steel Plate Girder Using Slab Anchor (Slab Anchor를 사용한 판형교의 거동특성 연구)

  • Han, Sang-Yun;Han, Taek-Hee;Park, Nam-Hoi;Kang, Young-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.2 s.5
    • /
    • pp.105-113
    • /
    • 2002
  • Steel-Concrete composite girders have been used since early in the 1920's due to their advantages, which are lower weight, increasement of stiffness, slenderness, long span. However, in designing short to continuous composite bridges, negative moment occurs in mid-support and creates problems such as cracks in the concrete slab. Therefore, partially composite bridges are considered. In this time, slab-anchor is used in these. If the stiffness of shear connectors is insufficient, slip would happen at the contact surface. Partial interaction is the case that takes account of slips. In this paper, the evaluation of initial shear stiffness of slab-anchor in composite bridges is obtained from Push-Out specimen. Also, finite element analyses which uses the initial shear stiffness of slab-anchor got the experiment are carried out on simple composite girder and continuous composite girder. Futhermore, the ratio of composite according to various shear stiffness are investigated and the classification according to the ratio of composite is proposed.

Mechanical Properties of Hwangtoh-Based Alkali-Activated Concrete

  • Yang, Keun-Hyeok;Hwang, Hey-Zoo;Lee, Seol
    • Architectural research
    • /
    • v.11 no.1
    • /
    • pp.25-33
    • /
    • 2009
  • This study presents the testing of 15 hwangtoh-based cementless concrete mixes to explore the significance and limitations of the development of eco-friendly concrete without carbon dioxide emissions while maintaining various beneficial effects. Hwangtoh, which is a kind of kaolin, was incorporated with inorganic materials, such as calcium hydroxide, to produce a cement-less binder. The main variables investigated were the water-to-binder ratio and fine aggregate-to-total aggregate ratio to ascertain the reliable mixing design of hwangtoh-based cementless concrete. The variation of slump with elapsed time was recorded in fresh concrete specimens. Mechanical properties of hardened concrete were also measured: including compressive strength gain, splitting tensile strength, moduli of rupture and elasticity, stress-strain relationship, and bond resistance. In addition, mechanical properties of hwangtoh-based cement-less concrete were compared with those of ordinary portland cement (OPC) concrete and predictions obtained from the design equations specified in ACI 318-05 and CEB-FIP for OPC concrete, wherever possible. Test results show that the mechanical properties of hwangtoh-based concrete were significantly influenced by the water-to-binder ratio and to less extend by fine aggregate-to-total aggregate ratio. The moduli of rupture and elasticity of hwangtoh-based concrete were generally lower than those of OPC concrete. In addition, the stress-strain and bond stress-slip relationships measured from hwangtoh-based concrete showed little agreement with the design model specified in CEB-FIP. However, the measured moduli of rupture and elasticity, and bond strength were higher than those given in ACI 318-05 and CEB-FIP. Overall, the test results suggest that the hwangtoh-based concrete shows highly effective performance and great potential as an environmental-friendly building material.

A Quantitative Study of the Quality of Deconvolved Wide-field Microscopy Images as Function of Empirical Three-dimensional Point Spread Functions

  • Adur, Javier;Vicente, Nathalie;Diaz-Zamboni, Javier;Izaguirre, Maria Fernanda;Casco, Victor Hugo
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.252-263
    • /
    • 2011
  • In this work, for the first time, the quality of restoration in wide-field microscopy images after deconvolution was analyzed as a function of different Point Spread Functions using one deconvolution method, on a specimen of known size and on a biological specimen. The empirical Point Spread Function determination can significantly depend on the numerical aperture, refractive index of the embedding medium, refractive index of the immersion oil and cover slip thickness. The influence of all of these factors is shown in the same article and using the same microscope. We have found that the best deconvolution results are obtained when the empirical PSF utilized is obtained under the same conditions as the specimen. We also demonstrated that it is very important to quantitatively check the process' outcome using several quality indicators: Full-Width at Half-Maximum, Contrast-to-Noise Ratio, Signal-to-Noise Ratio and a Tenengrad-based function. We detected a significant improvement when using an indicator to measure the focus of the whole stack. Therefore, to qualitatively determinate the best deconvolved image between different conditions, one approach that we are pursuing is to use Tenengrad-based function indicators in images obtained using a wide-field microscope.