To improve prediction quality of a nonlinear prediction system, the system's capability for uncertainty of nonlinear data should be satisfactory. This paper presents a TSK fuzzy prediction system that can consider and deal with the uncertainty of nonlinear data sufficiently. In the design procedures of the proposed system, HCBKA(Hierarchical Correlationship-Based K-means clustering Algorithm) was used to generate the accurate fuzzy rule base that can control output according to input efficiently, and the first-order difference method was applied to reflect various characteristics of the nonlinear data. Also, multiple prediction systems were designed to analyze the prediction tendencies of each difference data generated by the difference method. In addition, to enhance the prediction quality of the proposed system, an error compensation method was proposed and it compensated the prediction error of the systems suitably. Finally, the prediction performance of the proposed system was verified by simulating two typical time series examples.
In this paper, the Multi-FNNs(Fuzzy-Neural Networks) architecture is identified and optimized using HCM(Hard C-Means) clustering method and genetic algorithms. The proposed Multi-FNNs architecture uses simplified inference and linear inference as fuzzy inference method and error back propagation algorithm as learning rules. Here, HCM clustering method, which is carried out for the process data preprocessing of system modeling, is utilized to determine the structure of Multi-FNNs according to the divisions of input-output space using I/O process data. Also, the parameters of Multi-FNNs model such as apexes of membership function, learning rates and momentum coefficients are adjusted using genetic algorithms. An aggregate performance index with a weighting factor is used to achieve a sound balance between approximation and generalization abilities of the model. To evaluate the performance of the proposed model we use the time series data for gas furnace and the NOx emission process data of gas turbine power plant.
We can easily buy network system for high performance micro-processor, progress computer architecture is caused of high bandwidth and low delay time. Coupling PC-based commodity technology with distributed computing methodologies provides an important advance in the development of single-user dedicated systems. Lately Network is joined PC or workstation by computers of high performance and low cost. Than it make intensive that Cluster system is resembled supercomputer. Unix, Linux, BSD, NT(Windows series) can use Cluster system OS(operating system). I'm chosen linux gain low cost, high performance and open technical documentation. This paper is benchmark performance of Beowulf clustering by UltraSPARC-1K(64bit-RISC processor). Benchmark tools use MPI(Message Passing Interface) and NetPIPE. Beowulf is a class of experimental parallel workstations developed to evaluate and characterize the design space of this new operating point in price-performance.
In this paper, we suggest a optimal design method of Fuzzy-Neural Networks model for complex and nonlinear systems. FNNs have the stucture of fusion of both fuzzy inference with linguistic variables and Neural Networks. The network structure uses the simpified inference as fuzzy inference system and the BP algorithm as learning procedure. And we use a clustering algorithm to find initial parameters of membership function. The parameters such as membership functions, learning rates and momentum coefficients are easily adjusted using the genetic algorithms. Also, the performance index with weighted value is introduced to achieve a meaningful balance between approximation and generalization abilities of the model. To evaluate the performance index, we use the time series data for gas furnace and the sewage treatment process.
A design method of rule-based fuzzy modeling is presented for the model identification of complex and nonlinear systems. The proposed rule-based fuzzy modeling implements system structure and parameter identification in the efficient form of ``IF....,THEN...', using the theories of optimization theory , linguistic fuzzy implication rules and fuzzy c-means clustering. Three kinds of method for fuzzy modeling presented in this paper include simplified inference (type I), linear inference (type 2), and modified linear inference (type 3). In order to identify premise structure and parameter of fuzzy implication rules, fuzzy c- means clustering and modified complex method are used respectively and the least sequare method is utilized for the identification of optimum consequence parameters. Time series data for gas furance and those for sewage treatment process are used to evaluate the performance of the proposed rule-based fuzzy modeling. Comparison shows that the proposed method can produce the fuzzy model with higher accuracy than previous other studies.
International Journal of Internet, Broadcasting and Communication
/
제7권1호
/
pp.23-29
/
2015
Energy constraints of wireless sensor networks are an important challenge. Data Transmission requires energy. Distance between origin and destination has an important role in energy consumption. In addition, the location of base station has a large impact on energy consumption and a specific method not proposed for it. In addition, a obtain model for location of base station proposed. Also a model for distributed clustering is presented by cluster heads. Eventually, a combination of discussed ideas is proposed to improve the energy consumption. The proposed ideas have been implemented over the LEACH-C protocol. Evaluation results show that the proposed methods have a better performance in energy consumption and lifetime of the network in comparison with similar methods.
시계열 데이터의 특징을 추출하여 분석하는 과정에서 시게열 데이터가 가지는 고차원성은 차원의 저주(Course of Dimensionality)로 인해 데이터내의 유효한 정보를 찾는데 어려움을 만든다. 이러한 문제를 해결하기 위해 차원 축소 기법(dimensionality reduction)이 널리 사용되고 있지만, 축소 과정에서 발생하는 정보의 희석으로 인하여 시계열 데이터에 대한 군집화(clustering)등을 수행하는데 있어서 성능의 변화를 가져온다. 본 논문은 이러한 현상을 관찰하기 위해 이산 웨이블릿 변환(Discrete Wavelet Transform:DWT)과 오토 인코더(AutoEncoder)를 차원 축소 기법으로 활용하여 시계열 데이터의 차원을 압축 한 뒤, 압축된 데이터를 K-평균(K-means) 알고리즘에 적용하여 군집화의 효율성을 비교하였다. 성능 비교 결과, DWT는 압축된 차원수 그리고 오토인코더는 시계열 데이터에 대한 충분한 학습이 각각 보장된다면 좋은 군집화 성능을 보이는 것을 확인하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권9호
/
pp.4624-4644
/
2019
With the development of films, games and animation industry, analysis and reuse of human motion capture data become more and more important. Human motion segmentation, which divides a long motion sequence into different types of fragments, is a key part of mocap-based techniques. However, most of the segmentation methods only take into account low-level physical information (motion characteristics) or high-level data information (statistical characteristics) of motion data. They cannot use the data information fully. In this paper, we propose an unsupervised framework using both low-level physical information and high-level data information of human motion data to solve the human segmentation problem. First, we introduce the algorithm of CFSFDP and optimize it to carry out initial segmentation and obtain a good result quickly. Second, we use the ACA method to perform optimized segmentation for improving the result of segmentation. The experiments demonstrate that our framework has an excellent performance.
Communications for Statistical Applications and Methods
/
제15권6호
/
pp.925-937
/
2008
본 논문에서는 주식시장에서 거래되는 다수의 주식거래종목들을 몇 개의 그룹으로 군집화하는 주제를 연구한다. 시간에 관계없이 분산이 일정한 ARMA모형과 다르게, 주가, 환율 등의 금융시계열자료에서는 조건부 이분산성을 따르게 된다. 또한, 많은 사람들이 금융시계열자료에서 관심을 갖는 것은 바로 이 변동성이다. 그러므로, 이 연구에서는 조건부 이분산성을 모형화하기에 적합하다고 알려진 일반화 조건부 이분산성 자기회귀모형에 초점을 맞춘다. 먼저 두 개의 주식종목들 사이에 변동성(volatility)의 유사성 그리고 구조의 유사성을 재는 거리를 정의하고, 모의실험을 수행한다. 실증자료로 최근 3년 동안 관찰된 국내 11개 주가의 수익률을 변동성과 구조에 따라 군집화한다.
최근에 이르기까지 교통분야에서 차량에 관한 정보를 수집하기 위하여 사용되고 있는 검지쳬계는 유도식 루프검지기 (Inductive Loop Detector,ILD)이다. 유도식 검지기로 부터 수집되는 교통자료는 점유시간(차량이 검지기를 점유한시간)과 비점유시간(통행 차량과 차량간의 시간차)및 교통량이 기초 수집자료가 된다. 특히 점유 시간은 신호의 현시 길이를 결정 및 과포화제어를 위한 대기행렬예측 등 다양한 관제알고리즘에 있어서 핵심적인 자료이므로 높은 신뢰도가 요구된다. 이러한 신뢰도는 검지로 부터 수집될 수 있는 자료들을 토대로 통행 차종을 식별함으로써 향상시킬 수 있으며, 관련 관제 알고리즘의 신뢰도 향상은 물론 최근 관심이 고조되고 있는 무인자동감시 체계 및 교통정보 자동 수집장치의 개발을 유도할 수 있다. 본 논문에서는 통행하는 차량들에 대하여 수집 되는 기초자료를 기반으로 인식하기 위한 방법으로 통계적 클러스터링 방법 두 가지와 신경망 클러스터링 방법 등 세가지 방법을 제시하고, 결과로서 무인 자동감시 체계에 관한 활용 방법을 제시한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.