• 제목/요약/키워드: time series clustering

검색결과 187건 처리시간 0.025초

HCBKA 기반 오차 보정형 TSK 퍼지 예측시스템 설계 (Design of HCBKA-Based TSK Fuzzy Prediction System with Error Compensation)

  • 방영근;이철희
    • 전기학회논문지
    • /
    • 제59권6호
    • /
    • pp.1159-1166
    • /
    • 2010
  • To improve prediction quality of a nonlinear prediction system, the system's capability for uncertainty of nonlinear data should be satisfactory. This paper presents a TSK fuzzy prediction system that can consider and deal with the uncertainty of nonlinear data sufficiently. In the design procedures of the proposed system, HCBKA(Hierarchical Correlationship-Based K-means clustering Algorithm) was used to generate the accurate fuzzy rule base that can control output according to input efficiently, and the first-order difference method was applied to reflect various characteristics of the nonlinear data. Also, multiple prediction systems were designed to analyze the prediction tendencies of each difference data generated by the difference method. In addition, to enhance the prediction quality of the proposed system, an error compensation method was proposed and it compensated the prediction error of the systems suitably. Finally, the prediction performance of the proposed system was verified by simulating two typical time series examples.

HCM과 유전자 알고리즘에 기반한 확장된 다중 FNN 모델 설계 (Design of Extended Multi-FNNs model based on HCM and Genetic Algorithm)

  • 박호성;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.420-423
    • /
    • 2001
  • In this paper, the Multi-FNNs(Fuzzy-Neural Networks) architecture is identified and optimized using HCM(Hard C-Means) clustering method and genetic algorithms. The proposed Multi-FNNs architecture uses simplified inference and linear inference as fuzzy inference method and error back propagation algorithm as learning rules. Here, HCM clustering method, which is carried out for the process data preprocessing of system modeling, is utilized to determine the structure of Multi-FNNs according to the divisions of input-output space using I/O process data. Also, the parameters of Multi-FNNs model such as apexes of membership function, learning rates and momentum coefficients are adjusted using genetic algorithms. An aggregate performance index with a weighting factor is used to achieve a sound balance between approximation and generalization abilities of the model. To evaluate the performance of the proposed model we use the time series data for gas furnace and the NOx emission process data of gas turbine power plant.

  • PDF

UltraSPARC(64bit-RISC processor)을 위한 고성능 컴퓨터 리눅스 클러스터링 (HPC(High Performance Computer) Linux Clustering for UltraSPARC(64bit-RISC processor))

  • 김기영;조영록;장종권
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 컴퓨터소사이어티 추계학술대회논문집
    • /
    • pp.45-48
    • /
    • 2003
  • We can easily buy network system for high performance micro-processor, progress computer architecture is caused of high bandwidth and low delay time. Coupling PC-based commodity technology with distributed computing methodologies provides an important advance in the development of single-user dedicated systems. Lately Network is joined PC or workstation by computers of high performance and low cost. Than it make intensive that Cluster system is resembled supercomputer. Unix, Linux, BSD, NT(Windows series) can use Cluster system OS(operating system). I'm chosen linux gain low cost, high performance and open technical documentation. This paper is benchmark performance of Beowulf clustering by UltraSPARC-1K(64bit-RISC processor). Benchmark tools use MPI(Message Passing Interface) and NetPIPE. Beowulf is a class of experimental parallel workstations developed to evaluate and characterize the design space of this new operating point in price-performance.

  • PDF

클러스터링 기법 및 유전자 알고리즘을 이용한 퍼지 뉴럴 네트워크 모델의 최적화에 관한 연구 (A Study On Optimization Of Fuzzy-Neural Network Using Clustering Method And Genetic Algorithm)

  • 박춘성;윤기찬;박병준;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.566-568
    • /
    • 1998
  • In this paper, we suggest a optimal design method of Fuzzy-Neural Networks model for complex and nonlinear systems. FNNs have the stucture of fusion of both fuzzy inference with linguistic variables and Neural Networks. The network structure uses the simpified inference as fuzzy inference system and the BP algorithm as learning procedure. And we use a clustering algorithm to find initial parameters of membership function. The parameters such as membership functions, learning rates and momentum coefficients are easily adjusted using the genetic algorithms. Also, the performance index with weighted value is introduced to achieve a meaningful balance between approximation and generalization abilities of the model. To evaluate the performance index, we use the time series data for gas furnace and the sewage treatment process.

  • PDF

퍼지추론 방법에 의한 퍼지동정과 하수처리공정시스템 응용 (Fuzzy Identification by means of Fuzzy Inference Method and Its Application to Wate Water Treatment System)

  • 오성권;주영훈;남위석;우광방
    • 전자공학회논문지B
    • /
    • 제31B권6호
    • /
    • pp.43-52
    • /
    • 1994
  • A design method of rule-based fuzzy modeling is presented for the model identification of complex and nonlinear systems. The proposed rule-based fuzzy modeling implements system structure and parameter identification in the efficient form of ``IF....,THEN...', using the theories of optimization theory , linguistic fuzzy implication rules and fuzzy c-means clustering. Three kinds of method for fuzzy modeling presented in this paper include simplified inference (type I), linear inference (type 2), and modified linear inference (type 3). In order to identify premise structure and parameter of fuzzy implication rules, fuzzy c- means clustering and modified complex method are used respectively and the least sequare method is utilized for the identification of optimum consequence parameters. Time series data for gas furance and those for sewage treatment process are used to evaluate the performance of the proposed rule-based fuzzy modeling. Comparison shows that the proposed method can produce the fuzzy model with higher accuracy than previous other studies.

  • PDF

The Energy Efficient for Wireless Sensor Network Using The Base Station Location

  • Baral, Shiv Raj;Song, Young-Il;Jung, Kyedong;Lee, Jong-Yong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제7권1호
    • /
    • pp.23-29
    • /
    • 2015
  • Energy constraints of wireless sensor networks are an important challenge. Data Transmission requires energy. Distance between origin and destination has an important role in energy consumption. In addition, the location of base station has a large impact on energy consumption and a specific method not proposed for it. In addition, a obtain model for location of base station proposed. Also a model for distributed clustering is presented by cluster heads. Eventually, a combination of discussed ideas is proposed to improve the energy consumption. The proposed ideas have been implemented over the LEACH-C protocol. Evaluation results show that the proposed methods have a better performance in energy consumption and lifetime of the network in comparison with similar methods.

시계열 데이터에 대한 클러스터링 성능 분석: Wavelet과 Autoencoder 비교 (Clustering Performance Analysis for Time Series Data: Wavelet vs. Autoencoder)

  • 황우성;임효상
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 추계학술발표대회
    • /
    • pp.585-588
    • /
    • 2018
  • 시계열 데이터의 특징을 추출하여 분석하는 과정에서 시게열 데이터가 가지는 고차원성은 차원의 저주(Course of Dimensionality)로 인해 데이터내의 유효한 정보를 찾는데 어려움을 만든다. 이러한 문제를 해결하기 위해 차원 축소 기법(dimensionality reduction)이 널리 사용되고 있지만, 축소 과정에서 발생하는 정보의 희석으로 인하여 시계열 데이터에 대한 군집화(clustering)등을 수행하는데 있어서 성능의 변화를 가져온다. 본 논문은 이러한 현상을 관찰하기 위해 이산 웨이블릿 변환(Discrete Wavelet Transform:DWT)과 오토 인코더(AutoEncoder)를 차원 축소 기법으로 활용하여 시계열 데이터의 차원을 압축 한 뒤, 압축된 데이터를 K-평균(K-means) 알고리즘에 적용하여 군집화의 효율성을 비교하였다. 성능 비교 결과, DWT는 압축된 차원수 그리고 오토인코더는 시계열 데이터에 대한 충분한 학습이 각각 보장된다면 좋은 군집화 성능을 보이는 것을 확인하였다.

A Framework for Human Motion Segmentation Based on Multiple Information of Motion Data

  • Zan, Xiaofei;Liu, Weibin;Xing, Weiwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권9호
    • /
    • pp.4624-4644
    • /
    • 2019
  • With the development of films, games and animation industry, analysis and reuse of human motion capture data become more and more important. Human motion segmentation, which divides a long motion sequence into different types of fragments, is a key part of mocap-based techniques. However, most of the segmentation methods only take into account low-level physical information (motion characteristics) or high-level data information (statistical characteristics) of motion data. They cannot use the data information fully. In this paper, we propose an unsupervised framework using both low-level physical information and high-level data information of human motion data to solve the human segmentation problem. First, we introduce the algorithm of CFSFDP and optimize it to carry out initial segmentation and obtain a good result quickly. Second, we use the ACA method to perform optimized segmentation for improving the result of segmentation. The experiments demonstrate that our framework has an excellent performance.

이분산 시계열모형을 이용한 국내주식자료의 군집분석 (Clustering Korean Stock Return Data Based on GARCH Model)

  • 박만식;김나영;김희영
    • Communications for Statistical Applications and Methods
    • /
    • 제15권6호
    • /
    • pp.925-937
    • /
    • 2008
  • 본 논문에서는 주식시장에서 거래되는 다수의 주식거래종목들을 몇 개의 그룹으로 군집화하는 주제를 연구한다. 시간에 관계없이 분산이 일정한 ARMA모형과 다르게, 주가, 환율 등의 금융시계열자료에서는 조건부 이분산성을 따르게 된다. 또한, 많은 사람들이 금융시계열자료에서 관심을 갖는 것은 바로 이 변동성이다. 그러므로, 이 연구에서는 조건부 이분산성을 모형화하기에 적합하다고 알려진 일반화 조건부 이분산성 자기회귀모형에 초점을 맞춘다. 먼저 두 개의 주식종목들 사이에 변동성(volatility)의 유사성 그리고 구조의 유사성을 재는 거리를 정의하고, 모의실험을 수행한다. 실증자료로 최근 3년 동안 관찰된 국내 11개 주가의 수익률을 변동성과 구조에 따라 군집화한다.

클러스터링 방법을 이용한 차종인식 모형 (Recognition Model of the Vehicle Type usig Clustering Methods)

  • 조형기;민준영;최종욱
    • 한국정보처리학회논문지
    • /
    • 제3권2호
    • /
    • pp.369-380
    • /
    • 1996
  • 최근에 이르기까지 교통분야에서 차량에 관한 정보를 수집하기 위하여 사용되고 있는 검지쳬계는 유도식 루프검지기 (Inductive Loop Detector,ILD)이다. 유도식 검지기로 부터 수집되는 교통자료는 점유시간(차량이 검지기를 점유한시간)과 비점유시간(통행 차량과 차량간의 시간차)및 교통량이 기초 수집자료가 된다. 특히 점유 시간은 신호의 현시 길이를 결정 및 과포화제어를 위한 대기행렬예측 등 다양한 관제알고리즘에 있어서 핵심적인 자료이므로 높은 신뢰도가 요구된다. 이러한 신뢰도는 검지로 부터 수집될 수 있는 자료들을 토대로 통행 차종을 식별함으로써 향상시킬 수 있으며, 관련 관제 알고리즘의 신뢰도 향상은 물론 최근 관심이 고조되고 있는 무인자동감시 체계 및 교통정보 자동 수집장치의 개발을 유도할 수 있다. 본 논문에서는 통행하는 차량들에 대하여 수집 되는 기초자료를 기반으로 인식하기 위한 방법으로 통계적 클러스터링 방법 두 가지와 신경망 클러스터링 방법 등 세가지 방법을 제시하고, 결과로서 무인 자동감시 체계에 관한 활용 방법을 제시한다.

  • PDF