The cable component of cable-stayed bridges is gradually impacted by weather conditions, vehicle loads, and material corrosion. The stayed cable is a critical load-carrying part that closely affects the operational stability of a cable-stayed bridge. Damaged cables might lead to the bridge collapse due to their tension capacity reduction. Thus, it is necessary to develop structural health monitoring (SHM) techniques that accurately identify damaged cables. In this work, a combinational identification method of three efficient techniques, including statistical analysis, clustering, and neural network models, is proposed to detect the damaged cable in a cable-stayed bridge. The measured dataset from the bridge was initially preprocessed to remove the outlier channels. Then, the theory and application of each technique for damage detection were introduced. In general, the statistical approach extracts the parameters representing the damage within time series, and the clustering approach identifies the outliers from the data signals as damaged members, while the deep learning approach uses the nonlinear data dependencies in SHM for the training model. The performance of these approaches in classifying the damaged cable was assessed, and the combinational identification method was obtained using the voting ensemble. Finally, the combination method was compared with an existing outlier detection algorithm, support vector machines (SVM). The results demonstrate that the proposed method is robust and provides higher accuracy for the damaged cable detection in the cable-stayed bridge.
Song, Kwonsik;Park, Moonseo;Lee, Hyun-Soo;Ahn, Joseph
국제학술발표논문집
/
The 6th International Conference on Construction Engineering and Project Management
/
pp.559-563
/
2015
Identification of energy use patterns in buildings has a great opportunity for energy saving. To find what energy use patterns exist, clustering analysis has been commonly used such as K-means and hierarchical clustering method. In case of high dimensional data such as energy use time-series, data reduction should be considered to avoid the curse of dimensionality. Principle Component Analysis, Autocorrelation Function, Discrete Fourier Transform and Discrete Wavelet Transform have been widely used to map the original data into the lower dimensional spaces. However, there still remains an ongoing issue since the performance of clustering analysis is dependent on data type, purpose and application. Therefore, we need to understand which data reduction techniques are suitable for energy use management. This research aims find the best clustering method using energy use data obtained from Seoul National University campus. The results of this research show that most experiments with data reduction techniques have a better performance. Also, the results obtained helps facility managers optimally control energy systems such as HVAC to reduce energy use in buildings.
본 논문은 시 계열 데이터에서의 연관성 발견에 있어서 복잡성과 연산량을 효과적으로 줄이며 연관성을 찾아내는 기법에 대해 기술한다. 기존의 시 계열 데이터에서의 sequence 분할 방법은 복잡한 clustering 기법을 사용하여 많은 시간과 resource를 필요로 하는 제한이 있다 이에 본 논문에서는 효과적인 sequence 분할을 위한 증감 table을 이용한 방법을 제안하였다.
Journal of the Korean Data and Information Science Society
/
제26권4호
/
pp.885-894
/
2015
전력시스템의 안정적이고 효과적인 운영을 위해선 전력수요예측이 필요하다. 본 연구에서는 일별전력수요패턴의 시간에 따른 커브를 군집분석 하려고 한다. 2009년 1월 1일부터 2011년 12월 31일까지의 일별 시간단위 전력수요 자료는 추세성분 제거와 로그변환을 통해 계절성분과 오차성분으로 구성된 시계열자료로 변환되었다. 변환된 자료는 Ma 등 (2006)이 제안한 함수적 군집모형을 사용하여 분석되었고, 모수는 EM알고리즘과 일반화교차검정을 통해 추정되었다. 군집의 수는 휴일과 평일을 잘 분류하는 10개로 결정하였다. 분석결과 월요일, 평일 (화요일~금요일), 토요일, 일요일 또는 공휴일과 계절요인으로 전력수요 평균곡선이 설명된다. 함수적 군집분석을 통한 전력수요패턴의 과학적인 분류는 향후 단기전력수요예측에 활용된다.
이 연구는 시계열 과거 속도자료를 활용하여 유사한 패턴 변화를 보이는 요일을 그룹핑하는 알고리즘을 개발하였다. 알고리즘에 적용할 이력자료 시간적 범위는 과거 2개월치 자료를 사용하였으며, 공간적 범위는 도시부도로를 대상으로 하였다. 이 연구에서 제안한 알고리즘은 크게 거시적인 관점과 미시적인 관점으로 나누어 요일별 패턴분류를 수행하였다. 먼저 거시적인 관점에서 요일별 첨두/비첨두 시간대와 요일별 속도변화가 크게 나타나는 중점시간대를 도출하였다. 미시적인 관점에서는 거시적인 관점에서 도출된 중점시간대를 대상으로 요일간 속도 차이를 개별(요일별) 혹은 그룹간의 유사성을 비교하여 단계적으로 분류하는 2단계 속도 군집 알고리즘(Two-step speed clustering algorithm, TSC)을 개발하였다. TSC 알고리즘은 중점시간대의 매 가공주기(또는 제공주기)마다 요일별(월~일) 속도차이를 토대로 그룹핑하는 1단계와 1단계에서 도출된 각 그룹의 평균과 요일간의 속도차이를 비교하여 재할당하는 2단계로 구성된다. TSC 알고리즘은 실제 지점검지기에서 수집된 시간대별 시계열 자료를 토대로 개발 및 성능평가가 수행되었다. 따라서, 교통정보센터에서 수집 가공 저장되는 과거이력자료를 이용하여 요일별 패턴분류 수행이 가능하고 알고리즘 구현도 실제 가공체계에 적용하기 용이하다. 이 연구에서 제안한 알고리즘은 통행패턴기반 정보가공 알고리즘 개발, 요일별 반복정체구간 운영관리, TOD에 근거한 신호운영 개선 등 교통운영 및 관리 전반에 적용이 가능하다.
본 연구의 목적은 Bollerslev(1986)의 GARCH 모형을 이용하여 제주지역 감귤가격의 시계열적 특성과 가격변동성(price volatility)에 대한 실증분석을 수행하는 것이다. 본 연구의 주요결과는 다음과 같이 요약된다. 첫째, 감귤 가격 변화율의 시계열이 정규분포가 아닌 꼬리가 두터운 분포를 지니고 있는 것으로 나타났다. 이는 Jarque-Bera 통계량이 1%의 유의수준에서 감귤 가격변화율의 시계열의 분포가 정규분포라는 귀무가설을 기각함으로써 검증되었다. 둘째, Ljung-Box Q 통계량을 통해 감귤 가격변화율 시계열 간 상관관계가 높은 것으로 분석되었으며, 이는 ARCH-LM 검정을 통해 통계적으로 검증되었다. 셋째 GARCH(1,1) 모형 추정결과, 평균방정식의 상수항을 제외하고는 모든 계수의 추정 값이 1%의 유의수준에서 통계적으로 유의한 결과를 보였다. 그리고 분산방정식의 지속성 모수(λ=α1+β1) 값이 1에 근접한 것으로 추정되었다. 이는 현재와 유사한 변동성 수준이 장래에도 지속될 가능성이 매우 높은 것으로 해석된다. 그리고 이러한 결과는 제주감귤 가격변화율 시계열에서도 기존의 선행연구에서처럼 '변동성 군집(volatility clustering)' 현상이 나타나고 있음을 밝혀낸 것이다. 끝으로, 본 연구의 결과는 정부의 감귤 수급조절정책을 수립하는데 유용한 기초 자료로 활용될 수 있을 것으로 기대된다.
대부분의 클러스터링 알고리즘들은 고차원 공간에서 성능이 급격히 저하되는 경향이 있다. 더욱이 고차원 데이타는 상당한 양의 잡음 데이타를 포함하고 있으므로 알고리즘의 추가적인 효과성 문제를 야기한다. 그러므로 고차원 데이타의 구조와 특성을 지원하는 적합한 클러스터링 기법이 개발되어야 한다. 본 논문에서는 선형변환 프로젝션을 이용한 클러스터링 알고리즘 CLIP을 제안한다. CLIP은 고차원 클러스터링의 효율성 및 효과성 문제를 극복하기 위해 개발되었으며, 클러스터 형성에 밀접하게 연관된 부분 공간에서 클러스터를 탐사하는 기법이다. 알고리즘의 주요 사상은 각1차원적 부분공간에서의 클러스터링에 기본을 두고 있지만. 점진적인 프로젝션을 이용하여 고차원 클러스터를 탐사한 뿐만 아니라 연산을 획기적으로 줄인다. CLIP의 성능을 평가하기 위해 합성 데이타를 이용한 일련의 실험을 통하여 효율성 및 효과성을 증명한다
데이터마이닝에서 시계열 데이터로부터 순차패턴을 발견하는 연구는 사건이나 아이템이 주로 연구되어왔지만, 최근에는 설비의 상태를 알 수 있는 센서와 같은 수치 값의 형태를 가지는 분야에 관심을 가지게 되었다. 그러나 수치 형태의 데이터는 패턴을 만드는 동안 동일한 값을 가지는 경우가 거의 없기 때문에 기존의 사건이나 아이템 등으로 변환될 수 있는 패턴요소의 특징을 만드는 것이 가장 중요하다. 이러한 패턴요소를 발견하는 지금가지 방법은 이동 윈도우와 클러스터링을 사용하는 방법을 적용하였는데, 이러한 방법은 다양한 윈도우의 크기와 클러스터 값을 적용하여 반복적으로 작업을 하며, 찾아진 결과를 해석하는데도 많은 문제가 있다. 본 연구는 수치 값을 가진 데이터를 벡터의 형태로 만들어 패턴요소를 만드는 방법을 제시한다. 이렇게 만들어진 패턴요소는 전체 데이터를 사용하는 것 보다 이해되기 쉽고 보다 빠르게 순차패턴을 찾을 수 있다. 벡터로 변환된 패턴요소는 각도와 크기를 가지는데 우리는 이들 벡터들의 상호 연관성을 정의하고, 이들 연관성을 이용하여 순차패턴을 찾는 방법을 제시한다.
이 논문에서는 병렬구조 퍼지시스템(PSFS)에 기초한 카오스 시계열 데이터의 예측 알고리즘에 대해 연구하였다 병렬구조 퍼지시스템은 병렬로 연결된 여러개의 퍼지시스템에 의하여 구성되어있다. 병렬구조 퍼지시스템을 구성하고 있는 각 퍼지시스템은 다른 임베딩 차원과 시간지연을 가지고 과거의 데이터를 이용하여 동일한 데이터를 독립적으로 예측한다 퍼지시스템은 입출력 데이터를 클러스터링하여 모델링되는 MISO Sugeno 퍼지규칙에 의하여 특징지어진다. 각 퍼지시스템에 대한 최적 임베딩차원은 주어진 시간지연값에 대해서 최적의 성능을 갖도록 선정된다. 병렬구조 퍼지시스템은 각 구성요소 퍼지스템들의 예측값중에서 최대값과 최소값을 가지는 예측결과를 제외하고 나머지 값들을 평균하여 최종 예측 결과를 얻는다.
최근 들어 경리단길처럼 빠른 성장세를 보이는 골목상권에 대한 사회적 관심이 높아지면서 골목상권 성장요인에 대한 분석의 필요성이 커지고 있다. 이 연구에서는 서울시의 골목상권 매출액 자료에 동적타임워핑(DTW)을 적용한 시계열 군집분석을 통해 성장 골목상권을 찾아내고 로지스틱 회귀분석을 통해 골목상권의 성장에 영향을 미치는 요인들을 분석하였다. 군집분석 결과, 성장상권은 서남권과 동북권, 동남권에 많이 분포하는 것으로 나타났지만 성장상권의 권역 내 비중은 서북권, 동북권, 서남권이 높게 나타난 반면 동남권은 낮게 나타났다. 로지스틱 회귀분석 결과, 20~30대가 매출액에 미치는 영향은 50대에 비해 낮지만 성장에 미치는 영향은 더 큰 것으로 나타났다. 또한, 소득이 높은 지역에 위치한 골목상권들은 성장 한계에 도달한 경우가 많아 정체 또는 쇠퇴하는 경향이 나타났다. 지하철에 가까운 골목상권일 경우 매출액은 더 많지만 성장성은 오히려 떨어지는 것으로 나타났다. 본 연구는 기존연구에서 다루어지지 않던 골목상권의 성장요인을 처음으로 분석했다는 점에서 의의를 둘 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.