• Title/Summary/Keyword: time sensor fusion

Search Result 216, Processing Time 0.031 seconds

Fine-image Registration between Multi-sensor Satellite Images for Global Fusion Application of KOMPSAT-3·3A Imagery (KOMPSAT-3·3A 위성영상 글로벌 융합활용을 위한 다중센서 위성영상과의 정밀영상정합)

  • Kim, Taeheon;Yun, Yerin;Lee, Changhui;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1901-1910
    • /
    • 2022
  • Arriving in the new space age, securing technology for fusion application of KOMPSAT-3·3A and global satellite images is becoming more important. In general, multi-sensor satellite images have relative geometric errors due to various external factors at the time of acquisition, degrading the quality of the satellite image outputs. Therefore, we propose a fine-image registration methodology to minimize the relative geometric error between KOMPSAT-3·3A and global satellite images. After selecting the overlapping area between the KOMPSAT-3·3A and foreign satellite images, the spatial resolution between the two images is unified. Subsequently, tie-points are extracted using a hybrid matching method in which feature- and area-based matching methods are combined. Then, fine-image registration is performed through iterative registration based on pyramid images. To evaluate the performance and accuracy of the proposed method, we used KOMPSAT-3·3A, Sentinel-2A, and PlanetScope satellite images acquired over Daejeon city, South Korea. As a result, the average RMSE of the accuracy of the proposed method was derived as 1.2 and 3.59 pixels in Sentinel-2A and PlanetScope images, respectively. Consequently, it is considered that fine-image registration between multi-sensor satellite images can be effectively performed using the proposed method.

Development of a New Moving Obstacle Avoidance Algorithm using a Delay-Time Compensation for a Network-based Autonomous Mobile Robot (네트워크 기반 자율 이동 로봇을 위한 시간지연 보상을 통한 새로운 동적 장애물 회피 알고리즘 개발)

  • Kim, Dong-Sun;Oh, Se-Kwon;Kim, Dae-Won
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1916-1917
    • /
    • 2011
  • A development of a new moving obstacle avoidance algorithm using a delay-time Compensation for a network-based autonomous mobile robot is proposed in this paper. The moving obstacle avoidance algorithm is based on a Kalman filter through moving obstacle estimation and a Bezier curve for path generation. And, the network-based mobile robot, that is a unified system composed of distributed environmental sensors, mobile actuators, and controller, is compensated by a network delay compensation algorithm for degradation performance by network delay. The network delay compensation method by a sensor fusion using the Kalman filter is proposed for the localization of the robot to compensate both the delay of readings of an odometry and the delay of reading of environmental sensors. Through some simulation tests, the performance enhancement of the proposed algorithm in the viewpoint of efficient path generation and accurate goal point is shown here.

  • PDF

Path Planning based on Geographical Features Information that considers Moving Possibility of Outdoor Autonomous Mobile Robot

  • Ibrahim, Zunaidi;Kato, Norihiko;Nomura, Yoshihiko;Matsui, Hirokazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.256-261
    • /
    • 2005
  • In this research, we propose a path-planning algorithm for an autonomous mobile robot using geographical information, under the condition that the robot moves in unknown environment. All image inputted by camera at every sampling time are analyzed and geographical elements are recognized, and the geographical information is embedded in environmental map. The geographical information was transformed into 1-dimensional evaluation value that expressed the difficulty of movement for the robot. The robot goes toward the goal searching for path that minimizes the evaluation value at every sampling time. Then, the path is updated by integrating the exploited information and the prediction on unexploited environment. We used a sensor fusion method for improving the mobile robot dead reckoning accuracy. The experiment results that confirm the effectiveness of the proposed algorithm on the robot's reaching the goal successfully using geographical information are presented.

  • PDF

Generation of Land Surface Temperature Orthophoto and Temperature Accuracy Analysis by Land Covers Based on Thermal Infrared Sensor Mounted on Unmanned Aerial Vehicle (무인항공기에 탑재된 열적외선 센서 기반의 지표면 온도 정사영상 제작 및 피복별 온도 정확도 분석)

  • Park, Jin Hwan;Lee, Ki Rim;Lee, Won Hee;Han, You Kyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.4
    • /
    • pp.263-270
    • /
    • 2018
  • Land surface temperature is known to be an important factor in understanding the interactions of the ground-atmosphere. However, because of the large spatio-temporal variability, regular observation is rarely made. The existing land surface temperature is observed using satellite images, but due to the nature of satellite, it has the limit of long revisit period and low accuracy. In this study, in order to confirm the possibility of replacing land surface temperature observation using satellite imagery, images acquired by TIR (Thermal Infrared) sensor mounted on UAV (Unmanned Aerial Vehicle) are used. The acquired images were transformed from JPEG (Joint Photographic Experts Group) to TIFF (Tagged Image File Format) format and orthophoto was then generated. The DN (Digital Number) value of orthophoto was used to calculate the actual land surface temperature. In order to evaluate the accuracy of the calculated land surface temperature, the land surface temperature was compared with the land surface temperature directly observed with an infrared thermometer at the same time. When comparing the observed land surface temperatures in two ways, the accuracy of all the land covers was below the measure accuracy of the TIR sensor. Therefore, the possibility of replacing the satellite image, which is a conventional land surface temperature observation method, is confirmed by using the TIR sensor mounted on UAV.

Acquisition of Grass Harvesting Characteristics Information and Improvement of the Accuracy of Topographical Surveys for the GIS by Sensor Fusion (I) - Analysis of Grass Harvesting Characteristics by Sensor Fusion -

  • Choi, Jong-Min;Kim, Woong;Kang, Tae-Hwan
    • Journal of Biosystems Engineering
    • /
    • v.40 no.1
    • /
    • pp.28-34
    • /
    • 2015
  • Purpose: This study aimed to install an RTK-GPS (Real Time Kinematic-Global Positioning System) and IMU (Inertial Measurement Unit) on a tractor used in a farm to measure positions, pasture topography, posture angles, and vibration accelerations, translate the information into maps using the GIS, analyze the characteristics of grass harvesting work, and establish new technologies and construction standards for pasture infrastructure improvement based on the analyzed data. Method: Tractor's roll, pitch, and yaw angles and vibration accelerations along the three axes during grass harvesting were measured and a GIS map prepared from the data. A VRS/RTK-GPS (MS750, Trimble, USA) tractor position measuring system and an IMU (JCS-7401A, JAE, JAPAN) tractor vibration acceleration measuring systems were mounted on top of a tractor and below the operator's seat to obtain acceleration in the direction of progression, transverse acceleration, and vertical acceleration at 10Hz. In addition, information on regions with bad workability was obtained from an operator performing grass harvesting and compared with information on changes in tractor posture angles and vibration acceleration. Results: Roll and pitch angles based on the y-axis, the direction of forward movements of tractor coordinate systems, changed by at least $9-13^{\circ}$ and $8-11^{\circ}$ respectively, leading to changes in working postures in the central and northern parts of the pasture that were designated as regions with bad workability during grass harvesting. These changes were larger than those in other regions. The synthesized vectors of the vibration accelerations along the y-axis, the x-axis (transverse direction), and the z-axis (vertical direction) were higher in the central and northwestern parts of the pasture at 3.0-4.5 m/s2 compared with other regions. Conclusions: The GIS map developed using information on posture angles and vibration accelerations by position in the pasture is considered sufficiently utilizable as data for selection of construction locations for pasture infrastructure improvement.

Time Synchronization Error and Calibration in Integrated GPS/INS Systems

  • Ding, Weidong;Wang, Jinling;Li, Yong;Mumford, Peter;Rizos, Chris
    • ETRI Journal
    • /
    • v.30 no.1
    • /
    • pp.59-67
    • /
    • 2008
  • The necessity for the precise time synchronization of measurement data from multiple sensors is widely recognized in the field of global positioning system/inertial navigation system (GPS/INS) integration. Having precise time synchronization is critical for achieving high data fusion performance. The limitations and advantages of various time synchronization scenarios and existing solutions are investigated in this paper. A criterion for evaluating synchronization accuracy requirements is derived on the basis of a comparison of the Kalman filter innovation series and the platform dynamics. An innovative time synchronization solution using a counter and two latching registers is proposed. The proposed solution has been implemented with off-the-shelf components and tested. The resolution and accuracy analysis shows that the proposed solution can achieve a time synchronization accuracy of 0.1 ms if INS can provide a hard-wired timing signal. A synchronization accuracy of 2 ms was achieved when the test system was used to synchronize a low-grade micro-electromechanical inertial measurement unit (IMU), which has only an RS-232 data output interface.

  • PDF

A Investigation into Tool State Monitoring by Sensing Changes according to Groove (홈의 형상에 따른 센서 감지거리 변화를 이용한 공구상태 모니터링에 관한 연구)

  • Son, Gil-Ho;Kim, Mi-Ru;Lee, Seung-Jun;Jeong, Jae-Ho;Lew, Kyung-Hee;Lee, Deug-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.31-39
    • /
    • 2017
  • Research in the machine tool industry has focused on ICT-based smart machines rather than hardware technologies related to machine tools. Real-time tool-status monitoring is representative of this type of technology and has become important for measuring sensors during cutting processes. In this paper, we studied several research areas and used a round bar to conduct fundamental research into the axial displacement of the main spindle of a tool when it was subjected to a machining load. We were able to use the gap sensor to detect the axial displacement indirectly by using grooves with various shapes on the round bar and sensing the gaps between the grooves. We then determined the optimal groove shape for monitoring the tool state.

Performance Evaluation of a Compressed-State Constraint Kalman Filter for a Visual/Inertial/GNSS Navigation System

  • Yu Dam Lee;Taek Geun Lee;Hyung Keun Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.2
    • /
    • pp.129-140
    • /
    • 2023
  • Autonomous driving systems are likely to be operated in various complex environments. However, the well-known integrated Global Navigation Satellite System (GNSS)/Inertial Navigation System (INS), which is currently the major source for absolute position information, still has difficulties in accurate positioning in harsh signal environments such as urban canyons. To overcome these difficulties, integrated Visual/Inertial/GNSS (VIG) navigation systems have been extensively studied in various areas. Recently, a Compressed-State Constraint Kalman Filter (CSCKF)-based VIG navigation system (CSCKF-VIG) using a monocular camera, an Inertial Measurement Unit (IMU), and GNSS receivers has been studied with the aim of providing robust and accurate position information in urban areas. For this new filter-based navigation system, on the basis of time-propagation measurement fusion theory, unnecessary camera states are not required in the system state. This paper presents a performance evaluation of the CSCKF-VIG system compared to other conventional navigation systems. First, the CSCKF-VIG is introduced in detail compared to the well-known Multi-State Constraint Kalman Filter (MSCKF). The CSCKF-VIG system is then evaluated by a field experiment in different GNSS availability situations. The results show that accuracy is improved in the GNSS-degraded environment compared to that of the conventional systems.

Application of Satellite Data Spatiotemporal Fusion in Predicting Seasonal NDVI (위성영상 시공간 융합기법의 계절별 NDVI 예측에서의 응용)

  • Jin, Yihua;Zhu, Jingrong;Sung, Sunyong;Lee, Dong Kun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.2
    • /
    • pp.149-158
    • /
    • 2017
  • Fine temporal and spatial resolution of image data are necessary to monitor the phenology of vegetation. However, there is no single sensor provides fine temporal and spatial resolution. For solve this limitation, researches on spatiotemporal data fusion methods are being conducted. Among them, FSDAF (Flexible spatiotemporal data fusion) can fuse each band in high accuracy.In thisstudy, we applied MODIS NDVI and Landsat NDVI to enhance time resolution of NDVI based on FSDAF algorithm. Then we proposed the possibility of utilization in vegetation phenology monitoring. As a result of FSDAF method, the predicted NDVI from January to December well reflect the seasonal characteristics of broadleaf forest, evergreen forest and farmland. The RMSE values between predicted NDVI and actual NDVI (Landsat NDVI) of August and October were 0.049 and 0.085, and the correlation coefficients were 0.765 and 0.642 respectively. Spatiotemporal data fusion method is a pixel-based fusion technique that can be applied to variousspatial resolution images, and expected to be applied to various vegetation-related studies.

Intelligent Traffic Prediction by Multi-sensor Fusion using Multi-threaded Machine Learning

  • Aung, Swe Sw;Nagayama, Itaru;Tamaki, Shiro
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.6
    • /
    • pp.430-439
    • /
    • 2016
  • Estimation and analysis of traffic jams plays a vital role in an intelligent transportation system and advances safety in the transportation system as well as mobility and optimization of environmental impact. For these reasons, many researchers currently mainly focus on the brilliant machine learning-based prediction approaches for traffic prediction systems. This paper primarily addresses the analysis and comparison of prediction accuracy between two machine learning algorithms: Naïve Bayes and K-Nearest Neighbor (K-NN). Based on the fact that optimized estimation accuracy of these methods mainly depends on a large amount of recounted data and that they require much time to compute the same function heuristically for each action, we propose an approach that applies multi-threading to these heuristic methods. It is obvious that the greater the amount of historical data, the more processing time is necessary. For a real-time system, operational response time is vital, and the proposed system also focuses on the time complexity cost as well as computational complexity. It is experimentally confirmed that K-NN does much better than Naïve Bayes, not only in prediction accuracy but also in processing time. Multi-threading-based K-NN could compute four times faster than classical K-NN, whereas multi-threading-based Naïve Bayes could process only twice as fast as classical Bayes.