• Title/Summary/Keyword: time isolates

Search Result 335, Processing Time 0.036 seconds

Serovars of Xanthomonas campetris pv. oryzae Collected from Korea and Serological Diagnosis of Bacterial leaf Blight (우리나라 벼 흰빛잎마름병균 (Xanthomonas campestris pv. oryzae)의 혈청학적 분류 및 진단)

  • Choi J. E.;Lee D. K.;Seo J. H.
    • Korean Journal Plant Pathology
    • /
    • v.1 no.1
    • /
    • pp.61-66
    • /
    • 1985
  • Seventy-one strains collected from Korea were classified into three serovars (designated A, B-I and B-II) by using agar gel diffusion test with the antisera produced against Xanthomonas campestris pv. oryzae isolates Q7472 and Q7502. Of 71 isolates tested, 65 isolates belonged to serovar A, 5 isolates were serovar B-I, and one isolate was serovar B-II. The isolates of serovar B-I and B-II could be distinguished clearly from those of serovar A showing marked autoagglutination. Xanthomonas campestris pv. oryzae was serologically diagnosed in rice leaves by agar gel diffusion tests, possibly being distinguished from Xanthomonas campestris pv. olyzicola and E. herbicola. The pathogen could be also serologically detected from the extracts of diseased leaves, squeezed immediately, heated at $100^{\circ}C$ or incubated in PSA. Serological detection of Xanthomonas campestris pv. oryzae is a more reliable and less time-comsuming method.

  • PDF

MALDI-TOF Mass Spectrometry as a Useful Tool for Identification of Enterococcus spp. from Wild Birds and Differentiation of Closely Related Species

  • Stepien-Pysniak, Dagmara;Hauschild, Tomasz;Rozanski, Pawel;Marek, Agnieszka
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1128-1137
    • /
    • 2017
  • The aim of this study was to explore the accuracy and feasibility of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) in identifying bacteria from environmental sources, as compared with rpoA gene sequencing, and to evaluate the occurrence of bacteria of the genus Enterococcus in wild birds. In addition, a phyloproteomic analysis of certain Enterococcus species with spectral relationships was performed. The enterococci were isolated from 25 species of wild birds in central Europe (Poland). Proteomic (MALDI-TOF MS) and genomic (rpoA gene sequencing) methods were used to identify all the isolates. Using MALDI-TOF MS, all 54 (100%) isolates were identified as Enterococcus spp. Among these, 51 (94.4%) isolates were identified to the species level (log(score) ${\geq}2.0$), and three isolates (5.6%) were identified at a level of probable genus identification (log(score) 1.88-1.927). Phylogenetic analysis based on rpoA sequences confirmed that all enterococci had been correctly identified. Enterococcus faecalis was the most prevalent enterococcal species (50%) and Enterococcus faecium (33.3%) the second most frequent species, followed by Enterococcus hirae (9.3%), Enterococcus durans (3.7%), and Enterococcus casseliflavus (3.7%). The phyloproteomic analysis of the spectral profiles of the isolates showed that MALDI-TOF MS is able to differentiate among similar species of the genus Enterococcus.

Complete Genome Sequence Analysis of Two Divergent Groups of Sweet potato chlorotic fleck virus Isolates Collected from Korea

  • Kwak, Hae-Ryun;Kim, Jaedeok;Kim, Mikyeong;Seo, Jang-Kyun;Kim, Jeong-Soo;Choi, Hong-Soo
    • The Plant Pathology Journal
    • /
    • v.34 no.5
    • /
    • pp.451-457
    • /
    • 2018
  • The Sweet potato chlorotic fleck virus (SPCFV), of the genus Carlavirus (family Betaflexiviridae), was first detected as one of several viruses infecting sweet potatoes (Ipomea batatas L.) in Korea. Out of 154 sweet potato samples collected in 2012 that were showing virus-like symptoms, 47 (31%) were infected with SPCFV, along with other viruses. The complete genome sequences of four SPCFV isolates were determined and analyzed using previously reported genome sequences. The complete genomes were found to contain 9,104-9,108 nucleotides, excluding the poly-A tail, containing six putative open reading frames (ORFs). Further, the SPCFV Korean isolates were divided into two groups (Group I and Group II) by phylogenetic analysis based on the complete nucleotide sequences; Group I and Group II had low nucleotide sequence identities of about 73%. For the first time, we determined the complete genome sequence for the Group II SPCFV isolates. The amino acid sequence identity in coat proteins (CP) between the two groups was over 90%, whereas the amino acid sequence identity in other proteins was less than 80%. In addition, SPCFV Korean isolates had a low amino acid sequence identity (61% CPs and 47% in the nucleotide-binding protein [NaBp] region) to that of Melon yellowing-associated virus (MYaV), a typical Carlavirus.

Development of Multiplex PCR for Simultaneous Detection of Citrus Viruses and the Incidence of Citrus Viral Diseases in Late-Maturity Citrus Trees in Jeju Island

  • Hyun, Jae Wook;Hwang, Rok Yeon;Jung, Kyung Eun
    • The Plant Pathology Journal
    • /
    • v.33 no.3
    • /
    • pp.307-317
    • /
    • 2017
  • Satsuma dwarf virus (SDV) or Citrus mosaic sadwavirus (CiMV) were not consistently detected in RTPCR assay with the primer sets based on gene of Japan isolates. SDV and CiMV isolates were distinctively divided into two groups based on phylogenetic analysis of PP2 gene cloned from 22 Korean isolates, and the Korean CiMV and SDV isolates shared 95.5-96.2% and 97.1-97.7% sequence identity with Japanese isolate, respectively. We developed PP2-1 primer set based on the PP2 gene sequence of Korean isolates to simultaneously and effectively detect SDV and CiMV. And CTLV-2013 and CTV-po primer sets were newly designed for detection of Citrus tatter leaf virus (CTLV) and Citrus tristeza virus (CTV), respectively. Using these primer sets, a new multiplex PCR assay was developed as a means to simultaneously detect 4 citrus viruses, CTV, CTLV, SDV, and CiMV. The degree of detection by the multiplex PCR were consistent with those of uniplex RT-PCR for detection of each of the viruses. Therefore, the new multiplex PCR provides an efficient method for detecting 4 citrus viruses, which will help diagnose many citrus plants at the same time. We verified that 35.2% and 72.1% of 775 trees in 155 orchards were infected with SDV or CiMV (SDV/CiMV) and CTV by the multiplex-PCR assay, respectively, and CTLV was not detected in any of the trees tested.

Patterns of rpoC Mutations in Drug-Resistant Mycobacterium tuberculosis Isolated from Patients in South Korea

  • Yun, Yeo Jun;Lee, Jong Seok;Yoo, Je Chul;Cho, Eunjin;Park, Dahee;Kook, Yoon-Hoh;Lee, Keun Hwa
    • Tuberculosis and Respiratory Diseases
    • /
    • v.81 no.3
    • /
    • pp.222-227
    • /
    • 2018
  • Background: Rifampicin (RFP) is one of the principal first-line drugs used in combination chemotherapies against Mycobacterium tuberculosis, and its use has greatly shortened the duration of chemotherapy for the successful treatment of drug-susceptible tuberculosis. Compensatory mutations have been identified in rpoC that restore the fitness of RFP-resistant M. tuberculosis strains with mutations in rpoB. To investigate rpoC mutation patterns, we analyzed 93 clinical M. tuberculosis isolates from patients in South Korea. Methods: Drug-resistant mycobacterial isolates were cultured to determine their susceptibility to anti-tubercular agents. Mutations in rpoC were identified by sequencing and compared with the relevant wild-type DNA sequence. Results: In total, 93 M. tuberculosis clinical isolates were successfully cultured and tested for drug susceptibilities. They included 75 drug-resistant tuberculosis species, of which 66 were RFP-resistant strains. rpoC mutations were found in 24 of the 66 RFP-resistant isolates (36.4%). Fifteen different types of mutations, including single mutations (22/24, 91.7%) and multiple mutations (2/24, 8.3%), were identified, and 12 of these mutations are reported for the first time in this study. The most frequent mutation involved a substitution at codon 452 (nt 1356) resulting in amino acid change F452L. Conclusion: Fifteen different types of mutations were identified and were predominantly single-nucleotide substitutions (91.7%). Mutations were found only in dual isoniazid- and RFP-resistant isolates of M. tuberculosis. No mutations were identified in any of the drug-susceptible strains.

Studies on the Mechanism of 'Kresek' Induction of Rice Plant Caused by Xanthomonas oryzae (Uyeda & Ishiyama) Dowson (벼 위조형 흰빛잎마름병의 발병기작에 관한 연구)

  • Yu Y. H.;Cho Y. S.
    • Korean journal of applied entomology
    • /
    • v.17 no.1 s.34
    • /
    • pp.15-22
    • /
    • 1978
  • The study has been carried out to investigate the mechanism of 'Kresek' induction caused by Xanthomonas oryzae (Uyeda & Ishiyama) Dowson. The results are summarized as follows: 1. K-isolate could always induce 'Kresek' symptom on susceptible varieties when the pathogenic bacteria were introduced either way through the leaves or roots, while N-isolate could not induce. 2. Milyang 23 which showed 'Kresek' symptom had significantly smaller diameter of vessel elements than those of other two varieties examined. 3. The bacterial number of It-isolates in the extract of Milyang 23 was higher than N-isolates but there was no difference in bacterial number between K-and N-isolates when they were grown in the extract of Tongil. 4. N and K-isolates reached to death phase after 3 days and 9 days, respectibly, when they were grown in the extract of Milyang 23. Both isolates, however, reached to death phase at the same time after 3 days of incubation in the extract of Tonsil. 5. Heavy precipitation was observed in the extract of Milyang 23 at PH 3.0-4.0 range, while only traceable precipitation could be observed in the extract of Tongil at the same pH range under room temperature.

  • PDF

A Comparison of Genospecies of Clinical Isolates in the Acinetobacter spp. Complex Obtained from Hospitalized Patients in Busan, Korea

  • Park, Gyu-Nam;Kang, Hye-Sook;Kim, Hye-Ran;Jung, Bo-Kyung;Kim, Do-Hee;Chang, Kyung-Soo
    • Biomedical Science Letters
    • /
    • v.25 no.1
    • /
    • pp.40-53
    • /
    • 2019
  • Of the Acinetobacter spp., A. baumannii (genospecies 2) is the most clinically significant in terms of hospital-acquired infections worldwide. It is difficult to perform Acinetobacter-related taxonomy using phenotypic characteristics and routine laboratory methods owing to clusters of closely related species. The ability to accurately identify Acinetobacter spp. is clinically important because antimicrobial susceptibility and clinical relevance differs significantly among the different genospecies. Based on the medical importance of pathogenic Acinetobacter spp., the distribution and characterization of Acinetobacter spp. isolates from 123 clinical samples was determined in the current study using four typically applied bacterial identification methods; partial rpoB gene sequencing, amplified rRNA gene restriction analysis (ARDRA) of the intergenic transcribed spacer (ITS) region of the 16~23S rRNA, the $VITEK^{(R)}$ 2 system (an automated microbial identification system) and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). A. baumannii isolates (74.8%, 92/123) were the most common species, A. nosocomialis (10.6%, 13/123) and A. pittii isolates (7.5%, 9/123) were second and third most common strains of the A. calcoaceticus-A. baumannii (ACB) complex, respectively. A. soli (5.0%, 6/123) was the most common species of the non-ACB complex. RpoB gene sequencing and ARDRA of the ITS region were demonstrated to lead to more accurate species identification than the other methods of analysis used in this study. These results suggest that the use of rpoB genotyping and ARDRA of the ITS region is useful for the species-level identification of Acinetobacter isolates.

A Comparison of the Ability of Fungal Internal Transcribed Spacers and D1/D2 Domain Regions to Accurately Identify Candida glabrata Clinical Isolates Using Sequence Analysis

  • Kang, Min-Ji;Choi, Yoon-Sung;Kim, Sunghyun
    • Biomedical Science Letters
    • /
    • v.24 no.4
    • /
    • pp.430-434
    • /
    • 2018
  • Candida glabrata is the second most prevalent causative agent for candidiasis following C. albicans. The opportunistic yeast, C. glabrata, is able to cause the critical bloodstream infections in hospitalized patients. Conventional identification methods for yeasts are often time consuming and labor intensive. Therefore, recent studies on sequence-based identification have been conducted. Recently, sequencing the D1/D2 domain of the large subunit ribosomal RNA gene and the internal transcribed spacers (ITS) 1 and ITS2 regions of the ribosomal DNA has proven useful for DNA-based identification of most species of fungi. In the present study, therefore, fungal ITS and D1/D2 domain regions were targeted and analyzed by DNA sequencing for the accurate identification of C. glabrata clinical isolates. A total of 102 C. glabrata clinical isolates from various clinical samples including bloodstream, catheterized urine, bile and other body fluids were used in the study. The results of the DNA sequence analysis showed that the mean standard deviation of species identity percent score between ITS and D1/D2 domain regions was $97.8%{\pm}2.9$ and $99.7%{\pm}0.46$, respectively. These results revealed that the D1/D2 domain region might be a better target for identifying C. glabrata clinical isolates based on DNA sequences than the ITS1 and ITS2 regions. However, in order to evaluate the usefulness of D1/D2 domain region for species identification of all Candida species, other Candida species such as C. albicans, C. tropicalis, C. dubliniensis, and C. krusei should be verified in further studies additionally.

Growth Inhibition of Listeria monocytogenes by Weissella spp. from Kimchi Through Real-time PCR (실시간 정량 PCR을 통한 김치 유래 Weissella spp.에 의한 Listeria monocytogenes 생육 억제)

  • Lee, Young-Duck;Kim, Dae-Yong;Park, Jong-Hyun
    • Journal of Food Hygiene and Safety
    • /
    • v.30 no.1
    • /
    • pp.103-108
    • /
    • 2015
  • Weissella spp. from traditional Korean foods of Kimchi were isolated and characterized against food-borne pathogenic Listeria monocytogens. The isolates were identified as W. cibaria 0D17 and W. confusa 0D23 from Kimchi by the biochemical characteristics and 16S DNA sequencing. The culture solutions of the isolates adjusted to pH 7.0 showed L. monocytogens inhibition. To analyze the quantitative detection of L. monocytogenes, real-time PCR was performed according to the SYBR Green I method. The isolates grew well and L. monocytogens did not grow during the co-culture with those strains at $37^{\circ}C$. Therefore, W. cibaria 0D17 and W. confusa 0D23 might be the candidates as the functional lactic acid bacteria for improving food safety.

Real-Time PCR Detection of 16S rRNA Novel Mutations Associated with Helicobacter pylori Tetracycline Resistance in Iran

  • Dadashzadeh, Kianoosh;Milani, Morteza;Rahmati, Mohammad;Akbarzadeh, Abolfazl
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.8883-8886
    • /
    • 2014
  • Background: Tetracycline is an antibiotic widely used for the treatment of Helicobacter pylori infection, but its effectiveness is decreasing due to increasing bacterial resistance. The aim of this study was to investigate the occurrence of 16S rRNA mutations associated with resistance or reduced susceptibility to tetracycline ofHelicobacter pylori by real-time PCR (RT-PCR) assays from culture. Materials and Methods: Tetracycline susceptibility and minimal inhibition concentration (MIC) was determined by the Epsilometer test (Etest) method. A LightCycler assay developed to detect these mutations was applied to DNA extracted from culture. The 16S rRNA of these isolates was sequenced and resistance-associated mutations were identified. From 104 isolates of H. pylori examined, 11 showed resistance to tetracycline. Results: LightCycler assay was applied to DNA extracted from 11 tetracycline-susceptible and 11 tetracycline resistance H. pylori isolates. In our study the sequencing of the H. pylori wild types in 16 s rRNA gene were AGA 926-928 with MIC (0.016 to $0.5{\mu}g/ml$), while the sequencing and MIC for resistant were GGA and AGC, (0.75 to $1.5{\mu}g/ml$), respectively. Also we found a novel mutation in 2 strains with $84^{\circ}C$ as their melting temperatures and exhibition of an A939C mutation. Conclusions: We conclude that real-time PCR is an excellent method for determination of H. pylori tetracycline resistance related mutations that could be used directly on biopsy specimens.