• Title/Summary/Keyword: time integration scheme

Search Result 311, Processing Time 0.04 seconds

Three-Dimensional Transition in the Wake of a Circular Cylinder By Direct Numerical Simulation (DNS에 의한 원주 후류에서의 3차원 천이)

  • Knag, S.J.;Tanahashi, M.;Miyauchi, T.;Mo, J.O.;Lee, Y.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.570-577
    • /
    • 2001
  • Three-dimensional time-dependent flow past a circular cylinder is numerically investigated using direct numerical simulation for Reynolds number 280 and 300. The higher-order finite difference scheme is employed for the spatial distributions along with the second order Adams-Bashforth and the first order backward-Euler time integration. In x-y plane, the convection term is applied by the 5th order upwind scheme and the pressure and viscosity terms are applied by the 4th order central difference. And in spanwise, Navier-Stokes equation is distributed using of Spectral Method. At Reynolds number 259 the two-dimensional wake becomes linearly unstable to a second branch of modes with wavelength about 1.0 diameters at onset (B-mode). Present results of three-dimensional effects of in wake of a circular cylinder is represented with spanwise and streamwise vorticity contours as Reynolds numbers.

  • PDF

Pyrolysis Reaction for the Treatment of Hazardous Halogenated Hydrocarbon Waste (유해 할로겐화 탄화수소 폐기물 처리를 위한 열분해 반응)

  • 조완근
    • Journal of Environmental Science International
    • /
    • v.6 no.4
    • /
    • pp.399-407
    • /
    • 1997
  • The pyrolysis reactions of atomic hydrogen with chloroform were studied In a 4 cm 1.6. tubular flow reactor with low flow velocity 1518 cm/sec and a 2.6 cm 1.4. tubular flow reactor with high flow velocity (1227 cm/sec). The hydrogen atom concentration was measured by chemiluminescence titration with nitrogen dioxide, and the chloroform concentrations were determined using a gas chromatography. The chloroform conversion efficiency depended on both the chloroform flow rate and linear flow velocity, but 416 not depend on the flow rate of hydrogen atom. A computer model was employed to estimate a rate constant for the initial reaction of atomic hydrogen with chloroform. The model consisted of a scheme for chloroform-hydrogen atom reaction, Runge-Kutta 4th-order method for Integration of first-order differential equations describing the time dependence of the concentrations of various chemical species, and Rosenbrock method for optimization to match model and experimental results. The scheme for chloroform-hydrogen atom reaction Included 22 elementary reactions. The rate constant estimated using the data obtained from the 2.6 cm 1.4. reactor was to be 8.1 $\times$ $10^{-14}$ $cm^3$/molecule-sec and 3.8 $\times$ $10^{-15}$ cms/molecule-sec, and the deviations of computer model from experimental results were 9% and 12% , for the each reaction time of 0.028 sec and 0.072 sec, respectively.

  • PDF

A Novel Position Sensorless Speed Control Scheme for Permanent Magnet Synchronous Motor Drives

  • Won, Tae-Hyun;Lee, Man-Hyung
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.3
    • /
    • pp.125-132
    • /
    • 2002
  • PMSMS (permanent magnet synchronous motors) are widely used in industrial applications and home appliances because of their high torque to inertia ratio, superior power density, and high efficiency. For high performance control, accurate informations about the rotor position is essential. Sensorless algorithms have lately been studied extensively due to the high cost of position sensors and their low reliability in harsh environments. A novel position sensorless speed control for PMSMs uses indirect flux estimation and is presented in this paper. Rotor position and angular velocity are estimated by the proposed indirect flux estimation. Linkage flux and magnetic field flux are calculated by the voltage equations and the measured phase current without any integration. Instead of linkage flux calculation with integral operation, indirect flux and differential magnetic field are used for the estimation of rotor position. A proper rejection technique fur current noise effect in the calculation of differential linkage flux is introduced. The proposed indirect flux detecting method is free from the integral rounding error and linkage flux drift problem, because differential linkage flux can be calculated without any integral operation. Furthermore, electrical parameters of the PMSM can be measured by the proposed TCM (time compression method) for soft starting and precise estimation of rotor position. The position estimator uses accurate electrical parameters that are obtained from the proposed TCM at starting strategy. In the operating region, a proper compensation method fur temperature effect can compensate fir the estimation error from the variation of electrical parameters. The proposed novel position sensorless speed control scheme is verified by the experimental results.

Numerical Analysis on Separation Dynamics of Multi-stage Rocket System Using Parallelized Chimera Grid Scheme (병렬화된 Chimera 격자 기법을 이용한 다단 로켓의 단분리 운동 해석)

  • Ko Soon-Heum;Choi Seongjin;Kim Chongam;Rho Oh-Hyun;Park Jeong-joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.47-52
    • /
    • 2002
  • The supersonic flow around multi-stage rocket system is analyzed using 3-D compressible unsteady flow solver. A Chimera overset grid technique is used for the calculation of present configuration and grid around the core rocket is composed of 3 zones to represent fins in the core rocket. Flow solver is parallelized to reduce the computation time, and an efficient parallelization algorithm for Chimera grid technique is proposed. AUSMPW+ scheme is used for the spatial discretization and LU-SGS for the time integration. The flow field around multi-stage rocket was analyzed using this developed solver, and the results were compared with that of a sequential solver The speed-up ratio and the efficiency were measured in several processors. As a result, the computing speed with 12 processors was about 10 times faster than that of a sequential solver. Developed flow solver is used to predict the trajectory of booster in separation stage. From the analyses, booster collides against core rocket in free separation case. So, additional jettisoning forces and moments needed for a safe separation are examined.

  • PDF

COMPARISON OF TWO- AND THREE-DIMENSIONAL SUPERSONIC TURBULENT FLOWS OVER A SINGLE CAVITY (단일 공동주위의 2차원과 3차원 초음속 유동 비교)

  • Woo C.H.;Kim J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.235-238
    • /
    • 2005
  • The unsteady supersonic flow over two- and three-Dimensional cavities has been analyzed by the integration of unsteady Reynolds-Averaged Navier-Stokes(RANS) with the k - w turbulence model. The unsteady flow is characterized by the periodicity due to the mutual relation between the shear layer and the internal flow in cavities. Numerical method is upwind TVD scheme based on the flux vector split with the Van Leer limiters, and time accuracy is used explicit 4th stage Runge-Kutta scheme. Cavity flows are Comparison of two- and three-dimensional. The cavity has a L/D ratio of 3 for two-dimensional case. and same L/D and W/D ratio is 1 for three-dimensional case. The Mach and Reynolds numbers are held constant at 1.5 and 450000 respectively. For the three-dimensional case, the flow field is observed to oscillate in the 'shear layer mode' with a feedback mechanism that follow Rossiter's formula. On the other hand, the self-sustained oscillating flow transitions to a 'wake mode' for the two-dimensional simulation, with more violent fluctuations inside the cavity.

  • PDF

TWO- AND THREE-DIMENSIONAL SUPERSONIC TURBULENT FLOW OVER A SINGLE CAVITY (단일 공동 주위의 2차원 및 3차원 초음속 난류 유동 분석)

  • Woo C. H.;Kim J. S.
    • Journal of computational fluids engineering
    • /
    • v.10 no.4 s.31
    • /
    • pp.51-58
    • /
    • 2005
  • The unsteady supersonic flow over two- and three-dimensional cavities has been analyzed by the integration of unsteady Reynolds-Averaged Navier-Stokes(RANS) with the k-$\omega$ turbulence model. The unsteady flow is characterized by the periodicity due to the mutual relation between the shear layer and the internal flow in the cavity. An explicit 4th order Runge-Kutta scheme and an upwind TVD scheme based on the flux vector split with the van Leer limiters are used for time and space discritizations, respectively. The cavity has a L/D ratio of 3 for two-dimensional case, and same L/D and W/D ratio of I for three-dimensional case. The Mach and Reynolds numbers are 1.5 and 450000 respectively. In the three-dimensional flow, the field is observed to oscillate in the 'shear layer mode' with a feedback mechanism that follows Rossiter's formula. In the two-dimensional simulation, the self-sustained oscillating flow has more violent fluctuation inside the cavity. The primary fluctuating frequencies of two- and three- dimensional flow agree very well with the 2nd mode of Rossiter's frequency. In the three-dimensional flow, the 1st mode of frequency could be seen.

A Study on the Numerical Methodologies of Hydroelasticity Analysis for Ship Springing Problem (스프링잉 응답을 위한 유탄성 해석의 수치기법에 대한 연구)

  • Kim, Yoo-Il;Kim, Kyong-Hwan;Kim, Yong-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.3
    • /
    • pp.232-248
    • /
    • 2009
  • Numerical methodology to solve ship springing problem, which is basically fluid-structure interaction problem, was explored in this study. Solution of this hydroelasticity problem was sought by coupling higher order B-spline Rankine panel method and finite element method in time domain, each of which is introduced for fluid and structure domain respectively. Even though varieties of different combinations in terms of numerical scheme are possible and have been tried by many researchers to solve the problem, no systematic study regarding the characteristics of each scheme has been done so far. Here, extensive case studies have been done on the numerical schemes especially focusing on the iteration method, FE analysis of beam-like structure, handling of forward speed problem and so on. Two different iteration scheme, Newton style one and fixed point iteration, were tried in this study and results were compared between the two. For the solution of the FE-based equation of motion, direct integration and modal superposition method were compared with each other from the viewpoint of its efficiency and accuracy. Finally, calculation of second derivative of basis potential, which is difficult to obtain with accuracy within grid-based method like BEM was discussed.

Development of Finite Element Method for the Extended Boussinesq Equations (확장형 Boussinesq 방정식의 유한요소모형 개발)

  • Woo, Seung-Buhm;Choi, Young-Kwang;Yoon, Byung-Il
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.3
    • /
    • pp.133-141
    • /
    • 2007
  • A finite element model is developed for the extended Boussinesq equations that is capable of simulating the dynamics of long and short waves. Galerkin weighted residual method and the introduction of auxiliary variables for 3rd spatial derivative terms in the governing equations are used for the model development. The Adams-Bashforth-Moulton Predictor Corrector scheme is used as a time integration scheme for the extended Boussinesq finite element model so that the truncation error would not produce any non-physical dispersion or dissipation. This developed model is applied to the problems of solitary wave propagation. Predicted results is compared to available analytical solutions and laboratory measurements. A good agreement is observed.

An Efficient VM-Level Scaling Scheme in an IaaS Cloud Computing System: A Queueing Theory Approach

  • Lee, Doo Ho
    • International Journal of Contents
    • /
    • v.13 no.2
    • /
    • pp.29-34
    • /
    • 2017
  • Cloud computing is becoming an effective and efficient way of computing resources and computing service integration. Through centralized management of resources and services, cloud computing delivers hosted services over the internet, such that access to shared hardware, software, applications, information, and all resources is elastically provided to the consumer on-demand. The main enabling technology for cloud computing is virtualization. Virtualization software creates a temporarily simulated or extended version of computing and network resources. The objectives of virtualization are as follows: first, to fully utilize the shared resources by applying partitioning and time-sharing; second, to centralize resource management; third, to enhance cloud data center agility and provide the required scalability and elasticity for on-demand capabilities; fourth, to improve testing and running software diagnostics on different operating platforms; and fifth, to improve the portability of applications and workload migration capabilities. One of the key features of cloud computing is elasticity. It enables users to create and remove virtual computing resources dynamically according to the changing demand, but it is not easy to make a decision regarding the right amount of resources. Indeed, proper provisioning of the resources to applications is an important issue in IaaS cloud computing. Most web applications encounter large and fluctuating task requests. In predictable situations, the resources can be provisioned in advance through capacity planning techniques. But in case of unplanned and spike requests, it would be desirable to automatically scale the resources, called auto-scaling, which adjusts the resources allocated to applications based on its need at any given time. This would free the user from the burden of deciding how many resources are necessary each time. In this work, we propose an analytical and efficient VM-level scaling scheme by modeling each VM in a data center as an M/M/1 processor sharing queue. Our proposed VM-level scaling scheme is validated via a numerical experiment.

Simulation of Vehicle-Structure Dynamic Interaction by Displacement Constraint Equations and Stabilized Penalty Method (변위제한조건식과 안정화된 Penalty방법에 의한 차량 주행에 따른 구조물의 동적상호작용 해석기법)

  • Chung, Keun Young;Lee, Sung Uk;Min, Kyung Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.671-678
    • /
    • 2006
  • In this study, to describe vehicle-structure dynamic interaction phenomena with 1/4 vehicle model, nonlinear Hertzian contact spring and nonlinear contact damper are adopted. The external loads acting on 1/4 vehicle model are selfweight of vehicle and geometry information of running surface. The constraint equation on contact surface is implemented by the Penalty method with stabilization and the reaction from constraint violation. To describe pitching motion of various vehicles two types of the displacement constraint equations are exerted to connect between car bodies and between bogie frames, i.e., the rigid body connection and the rigid body connection with pin, respectively. For the time integration of dynamic equations of vehicles and structure Newmark time integration scheme is adopted. To reduce the error caused by inadequate time step size, adaptive time-stepping technique is also adopted. Thus, it is expected that more versatile dynamic interaction phenomena can be described by this approach and it can be applied to various railway dynamic problems with low computational cost.