• 제목/요약/키워드: time exceedance

검색결과 48건 처리시간 0.017초

Rain Attenuation Prediction at Different Time Percentages for Ku, K, and Ka Bands Satellite Communication Systems over Nigeria

  • Orji Prince Orji;Obiegbuna Dominic Chukwuebuka;Okoro Eucharia Chidinma;Ugonabo Obiageli Josephine;Okezuonu Patrick Chinedu;Iyida Evaristus Uzochukwu;Ugwu Chukwuebuka Jude;Menteso Firew Meka;Ikechukwu Ugochukwu Chiemeka
    • Journal of Astronomy and Space Sciences
    • /
    • 제41권1호
    • /
    • pp.25-33
    • /
    • 2024
  • This paper evaluates the influence of rainfall on propagated signal at different time exceedance percentages of an average year, over the climate zones of the country. Specifically, it demonstrates critical and non critical signal fade or signal outage time exceedance (0.001% to 1%) for Ku, K, and Ka-band systems in an average year. The study was carried out using meteorological data made available by the Nigerian Meteorological Agency (NiMet) over a period of 10 years (2009-2018). The four climate zones in the country were represented by five (5) locations; Maidugiri (warm desert climate), Sokoto (tropical dry climate), Port Harcourt (tropical monsoon climate), Abuja and Enugu (tropical savanna climate). The parameters were simulated into the International Telecommunications Union Recommended (ITU-R) models for rain attenuation over the tropics and results presented using MatLab and Origin Lab. Results of Ku band propagations showed that only locations in the tropical savanna and tropical monsoon climates experienced total signal outage for time percentage exceedance equal to or below 0.01% for both horizontal and vertical polarizations. At K band propagations, the five locations showed to have experienced signal outage at time exceedance equal to and below 0.01%, almost same was recorded for the Ka-band propagation. It was also observed that horizontal and vertical polarization of signal had slightly different rain attenuation values for the studied bands at the five locations, with horizontal polarization having higher values than vertical polarization.

지진예측을 위한 확률론적퍼지모형의 개발 (Development of Probabilistic-Fuzzy Model for Seismic Hazard Analysis)

  • 홍갑표
    • 전산구조공학
    • /
    • 제4권3호
    • /
    • pp.107-115
    • /
    • 1991
  • 지진예측을 위한 확률론적퍼지모형을 제안하였다. 제안된 모형은 지진발생에 대하여 무작위성(randomness)과 퍼지니스(fuzziness)를 같이 사용하여, 기존의 확률론에 근거한 지진예측방법을 개선할 수 있도록 하였다. 이 연구의 결과는 (a) 주어진 초과확률에 대한 지반가속도 또는 주어진 지반가속도에 대한 초과확률의 멤버쉽함수와 (b) 멤버쉽함수를 대표할 수 있는 특성값(characteristic value)이다. 확률론적 퍼지모형을 미국 Utah주의 Wasatch Front Range의 자료에 적용하여 서로 다른 연간 초과확률, 최대지반가속도에 대하여 지진도를 작성하였다.

  • PDF

강우자료의 비정상성을 고려한 재현기간 변화에 관한 연구 (A Study on the Changes of Return Period Considering Nonstationarity of Rainfall Data)

  • 신홍준;안현준;허준행
    • 한국수자원학회논문집
    • /
    • 제47권5호
    • /
    • pp.447-457
    • /
    • 2014
  • 본 연구에서는 초과확률 또는 비초과확률이 시간에 따라 변화한다는 비정상성을 가정하여 재현기간 산정에 대한 연구를 수행하였다. 비정상성을 고려한 2가지 재현기간 산정 방법에 대해 검토하고 비정상성 Gumbel 모형을 이용한 빈도해석을 수행하여 초과확률및 비초과확률을 구한 뒤비정상성을 고려한 재현기간 정의에따른 우리나라 재현기간의 변화에 대해서 살펴보았다. 적용 대상으로는 자료기간 30년 이상을 보유하면서 일 강우 자료의 경향성이 나타나는 서귀포, 인제, 제천, 구미, 문경, 거창 등 6개 지점을 선정하였다. 적용결과 비정상성을 고려한 재현기간 산정 시 기존의 재현기간 산정방법과는 재현기간이 다르게 산정됨을 알 수 있었고, 재현기간이 커질수록 정상성 가정하의 재현기간과 비정상성 가정하의 재현기간 값의 차이가 더 커지는 것으로 나타났다. 또한 비정상성을 고려한 재현기간의 2가지 정의 중 기대 대기시간(expected waiting time) 정의에 의한 방법이 기대 초과사상 수(expected number of exceedance event) 정의에 의한 방법보다 작은 재현기간이 산정 되었다.

공간 극단값의 분계점 모형 사례 연구 - 한국 여름철 강수량 (Threshold Modelling of Spatial Extremes - Summer Rainfall of Korea)

  • 황승용;최혜미
    • 응용통계연구
    • /
    • 제27권4호
    • /
    • pp.655-665
    • /
    • 2014
  • 폭염, 폭우와 가뭄 등과 같은 이상 기후 현상에 대한 적절한 대응이 최근 많이 요구되고 있다. 이상 기후 현상을 분석하기 위해 극단값 분석 기법을 적용할 수 있는데, 본 논문은에서는 한국의 여름철 강수량 자료(1973년부터 2012년까지의 5월부터 9월)를 분계점 초과값 모형으로 분석해보았다. 분계점은 한국의 기상관측소들을 5개의 군집으로 나누어, 각 군집별로 지리 정보와 시간을 공변량으로 하는 분위수 회귀 방법을 통하여 추정하였다. Northrop과 Jonathan (2011)과 같이 극단값들이 시공간적으로 독립이라고 가정하고 분석한 후, 추정오차와 검정 과정에 공간 종속성을 반영하였다.

Seismic microzonation of Kolkata

  • Shiuly, Amit;Sahu, R.B.;Mandal, Saroj
    • Geomechanics and Engineering
    • /
    • 제9권2호
    • /
    • pp.125-144
    • /
    • 2015
  • This paper presents the probabilistic seismic microzonation of densely populated Kolkata city, situated on the world's largest delta island with very soft alluvial soil deposit. At first probabilistic seismic hazard analysis of Kolkata city was carried out at bedrock level and then ground motion amplification due to sedimentary deposit was computed using one dimensional (1D) wave propagation analysis SHAKE2000. Different maps like fundamental frequency, amplification at fundamental frequency, peak ground acceleration (PGA), peak ground velocity (PGV), peak ground displacement (PGD), maximum response spectral acceleration at different time period bands are developed for variety of end users, structural and geotechnical engineers, land use planners, emergency managers and awareness of general public. The probabilistically predicted PGA at bedrock level is 0.12 g for 50% exceedance in 50 years and maximum PGA at surface level it varies from 0.095 g to 0.18 g for same probability of exceedance. The scenario of simulated ground motion revealed that Kolkata city is very much prone to damage during earthquake.

동적계획법을 이용한 추계학적 하천수질관리 (Stochastic River Water Quality Management by Dynamic Programming)

  • 조재현
    • 상하수도학회지
    • /
    • 제11권3호
    • /
    • pp.87-95
    • /
    • 1997
  • A river water quality management model was made by Dynamic programming. This model optimizes the wastewater treatment cost of the application area, and computed water quality with it must meet the water quality standard. And this model takes into consideration tributary input, wastewater treatment plant effluent, withdrawls for several purposes. Modified Streeter-Phelps equation was used to calculate BOD and DO. Optimization problem was solved with particular exceedance probability flow, and the water quality of each point was calculated with the decided treatment efficiencies. At that time, the probability satisfying the water quality standard of constraints to the exceedance probability of the flow. The developed model was applied to the lower part of the Han-River. The reliability to meet the water quality standard is 70 % when 4 wastewater treatment plants of Seoul City are operated by activated sludge system at autumn of the year 2001. Treatment cost of this case is 121.288 billion won per year.

  • PDF

대구지역 주요 도로변 대기오염물질의 농도 특성 (Characteristics of Air Pollutant Concentrations Near Major Roadways in Daegu)

  • 조완근;최성락
    • 한국환경과학회지
    • /
    • 제15권8호
    • /
    • pp.737-744
    • /
    • 2006
  • Present study was designed to characterize the concentrations of major roadside air pollutants in Daegu and to compare with those of Seoul and Busan. Evaluated were the exceedance frequence of mean concentrations of target compounds(CO, NO$_2$, O$_3$, PM$_{10}$, SO$_2$) and the relationship for time variation. Two air pollution monitoring stations(one roadside station and one residential station) in Daegu were selected for this study. In addition, one roadside monitoring station from each of Seoul and Busan was chosen for the comparison of Daegu monitoring stations. The data analyzed in the current study were collected from 1998 to 2000 by Daegu Regional Environmental Management Office. The roadside concentrations of NO2 and PM to and the exceedance frequency of ambient air standard levels in Daegu were higher than those of Seoul and Busan. Except 03, the roadside concentrations of all target compounds showed following three distinguished patterns; first, possibly due to increased traffic density, the concentrations increased from 0500 to 0900(LST), second, the concentrations decreased from 0900 to 1700(LST) possibly due to the increased wind velocity and decreased traffic density, and finally, increased traffic density, the concentrations increased again from 1700 to 2100(LST). An implication was that major air pollution sources shifted from residential area to road-area during rush hours.

Markov-based time-varying risk assessment of the subway station considering mainshock and aftershock hazards

  • Wei Che;Pengfei Chang;Mingyi Sun
    • Earthquakes and Structures
    • /
    • 제24권4호
    • /
    • pp.303-316
    • /
    • 2023
  • Rapid post-earthquake damage estimation of subway stations is particularly necessary to improve short-term crisis management and safety measures of urban subway systems after a destructive earthquake. The conventional Performance-Based Earthquake Engineering (PBEE) framework with constant earthquake occurrence rate is invalid to estimate the aftershock risk because of the time-varying rate of aftershocks and the uncertainty of mainshock-damaged state before the occurrence of aftershocks. This study presents a time-varying probabilistic seismic risk assessment framework for underground structures considering mainshock and aftershock hazards. A discrete non-omogeneous Markov process is adopted to quantify the time-varying nature of aftershock hazard and the uncertainties of structural damage states following mainshock. The time-varying seismic risk of a typical rectangular frame subway station is assessed under mainshock-only (MS) hazard and mainshock-aftershock (MSAS) hazard. The results show that the probabilities of exceeding same limit states over the service life under MSAS hazard are larger than the values under MS hazard. For the same probability of exceedance, the higher response demands are found when aftershocks are considered. As the severity of damage state for the station structure increases, the difference of the probability of exceedance increases when aftershocks are considered. PSDR=1.0% is used as the collapse prevention performance criteria for the subway station is reasonable for both the MS hazard and MSAS hazard. However, if the effect of aftershock hazard is neglected, it can significantly underestimate the response demands and the uncertainties of potential damage states for the subway station over the service life.

Temperature effect analysis of a long-span cable-stayed bridge based on extreme strain estimation

  • Yang, Xia;Zhang, Jing;Ren, Wei-Xin
    • Smart Structures and Systems
    • /
    • 제20권1호
    • /
    • pp.11-22
    • /
    • 2017
  • The long-term effect of ambient temperature on bridge strain is an important and challenging problem. To investigate this issue, one year data of strain and ambient temperature of a long-span cable-stayed bridge is studied in this paper. The measured strain-time history is decomposed into two parts to obtain the strains due to vehicle load and temperature alone. A linear regression model between the temperature and the strain due to temperature is established. It is shown that for every $1^{\circ}C$ increase in temperature, the stress is increased by 0.148 MPa. Furthmore, the extreme value distributions of the strains due to vehicle load, temperature and the combination effect of them during the remaining service period are estimated by the average conditional exceedance rate approach. This approach avoids the problem of declustering of data to ensure independence. The estimated results demonstrate that the 95% quantile of the extreme strain distribution due to temperature is up to $1.488{\times}10^{-4}$ which is 2.38 times larger than that due to vehicle load. The study also indicates that the estimated extreme strain can reflect the long-term effect of temperature on bridge strain state, which has reference significance for the reliability estimation and safety assessment.

하수관거 통수능 검토를 통한 관거 개선방안 연구 (Sewerage rehabilitation strategy based on sewer capacity evaluation)

  • 류재나;오재일;오석호
    • 상하수도학회지
    • /
    • 제23권1호
    • /
    • pp.47-55
    • /
    • 2009
  • Sewers are important national infrastructure and play an essential part by handling both wastewater and stormwater to minimise problems caused to human life and the environment. However, they can cause urban flooding when rainfall exceeds the system capacity. Sewer flooding is an unwelcome and increasingly frequent problem in many urban areas, and its frequency will increase over time with urbanisation and climate change. Under current standards, sewers are designed to drain stormwater generated by up to 10 year return period storms, but data suggests that many in practice have been experienced flooding with exceeding system capacity under increased storm events. A large number of studies has considered upgrading or increasing the design standard but there are still lack of information to propose a suitable return period with the corresponding system quantity to achieve. A methodology is required to suggest a proper level of standard within a suitable sewerage rehabilitation planning that can avoid the exceedance problem. This study aimed to develop a methodology to support effective sewer rehabilitation that could prevent urban flooding mainly resulted from the exceedance of existing storm sewer system capacity. Selected sewerage rehabilitation methods were examined under different storm return periods and compared to achieve the best value for money.