• Title/Summary/Keyword: time domain reflectometer (TDR)

Search Result 17, Processing Time 0.03 seconds

TDR(Time Domain Reflectometer)을 이용한 함수량의 측정

  • 박재현;김상준
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1997.05a
    • /
    • pp.475-479
    • /
    • 1997
  • 다공질매체에서의 포화-비포화 흐름 거동을 파악하기 위하여는 시간에 따른 함수량의 변화과정을 정확하고 빠르게 측정하여야 한다. 본 연구는 실험실에서 함수량을 측정하는 방법의 하나로서 TDR(Time Domain Reflectometer)을 사용하는 실험 방법에 관한 연구이다. TDR 이란 전기신호의 전도특성 이용하여 토양내 설치된 탐침(probe)의 전기신호 반향시간을 측정하는 기기로서 이 반향시간과 토양의 유전율상수(dielectric constant)의 관계를 이용하여 함수량을 추정할 수 있다. 본 연구에서는 TDR의 원리설명과 이를 이용한 함수량측정방법을 제시하고 있다.

  • PDF

Validation on Usability of Time Domain Reflectometer for Identifying Defected Aircraft Wiring (항공기 배선 결함 식별을 위한 TDR(시간영역 반사계) 활용 적합성)

  • Kim, Su-Woong;Lee, Jang-Ryong
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.3
    • /
    • pp.205-211
    • /
    • 2020
  • Wiring defect is a major concern for safe aircraft operations. However, troubleshooting process of a wiring defect is very difficult due to extensive and complex wiring system and installed location. Recently, time domain reflectometer (TDR) equipment that enables effective defected wiring troubleshooting has been introduced. Unfortunately, TDRs have not practically adopted by most of airlines' maintenance departments because the effectiveness and usefulness of TDRs have not been verified. This study was conducted to verify if TDRs can identify the location and type of defected aircraft wiring, and whether they can be applied for troubleshooting purposes. Experimental plan was established by using various wires and connections applied to actual aircraft and the observed results were compared with the TDR operation guide. The usability of the TDR in actual aircraft wiring defect detection may be acceptable as the experimental results showed similar results to the TDR operation guide.

Chip Pin Parasitic Extraction by Using TDR and NA (TDR 및 NA를 이용한 Chip Pin Parasitic 추출)

  • 이현배;박홍준
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.899-902
    • /
    • 2003
  • Chip Pin Parasitic은 실제 Chip Pad에서부터 Bonding Wire를 통한 Package Lead Frame까지를 의미한다. 여기서, Lead Frame 및 Bonding Wire에서 Inductance 및 작은 저항이 보이고, Chip Pad에서의 Capacitance, 그리고 Pad 부터 Ground까지의 Return Path에서 발생하는 저항이 보인다. 이들을 모두 합하면 L, R, C의 Series로 나타낼 수 있다. 본 논문에서는 이런 Chip Pin Parasitic을 추출 하기 위해서 TDR(Time Domain Reflectometer)과 NA(Network Analyzer)를 사용하였는데, TDR의 경우 PCB를 제작하여 Chip을 Board위에 붙인 후 Time Domain에서 측정 하였고 NA의 경우 Pico Probe를 이용하여 Chip pin에 직접 Probing해서 Smith Chart를 통하여 Extraction 값을 추출했다. 이 경우, NA를 이용한 측정이 좀 더 정확한 Parasitic 값을 추출할 수 있으리라 예상되겠지만, 실제로 Chip이 구동하기 위해서는 Board위에 있을 때의 상황도 고려해야 하기 때문에 TDR 추출 값과 NA 추출 값을 모두 비교하였다.

  • PDF

A Study on a Remote Leakage Sensing System in Waterworks Network (원격 상수도관망 누수감지 시스템에 관한 연구)

  • Kang, Byung-Mo;Hong, In-Sik
    • The KIPS Transactions:PartD
    • /
    • v.11D no.6
    • /
    • pp.1311-1318
    • /
    • 2004
  • Demand of water is increased according to city centralism phenomenon in population and development. In this progress, guarantee of enough water is important factor for water supply policy. For the detection of exact water leakage point, an epochal sensing technique using computer and internet is required, so, the water pipe having sensing wire and sensing technology using TDR(Time Domain Reflectometer), is proposed in this paper. For the prove of effectiveness of this system, pilot system using 300mm 3-layer coated steel pipe is made and tested.

Development and Application of TDR Penetrometer for Evaluation of Soil Water Content of Subsoil (지반의 함수비 평가를 위한 관입형 TDR 프로브의 개발 및 적용)

  • Hong, Won-Taek;Jung, Young-Seok;Lee, Jong-Sub;Byun, Yong-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.2
    • /
    • pp.39-46
    • /
    • 2015
  • Dielectric constant depends on the variation of soil water content, and the estimation of soil water content using time domain reflectometry (TDR) has been studied by many researchers. The purpose of this study is the development and application of TDR penetrometer (TDRP) in order to evaluate the soil water content according to the penetration depth. The TDRP consists of cone, sleeve, driving rod, hammer, and guide. Three electrodes, which are used to measure the dielectric constant of soils, are mounted on the surface of sleeve and, in turn, connected with coaxial cable and time domain reflectometer. To establish the relationship between the volumetric water content and dielectric constant, several laboratory tests by using the TDRP are performed in the specimens with a variety of volumetric water content. The experimental results show that the dielectric constant is strongly correlated to volumetric water content as polynomial equations with an order of 3. In addition, the volumetric water content calculated from the dielectric constant is similar to that obtained from the sample weight. In the field, a small sampler is used to compare the volumetric water content calculated from the dielectric constant with the volumetric water content obtained from the sample. The results of field application demonstrate that the volumetric water content estimated by the TDRP shows similar trend to the gravimetric water content of sample. This study suggests that the TDRP is effectively used to evaluate the volumetric water content of unsaturated soils according to the penetration depth.

Study on Characteristics of Controlled Low Strength Material Using Time Domain Reflectometry (시간영역반사법을 이용한 유동성 채움재의 특성 연구)

  • Han, Woojin;Lee, Jong-Sub;Byun, Yong-Hoon;Cho, Samdeok;Kim, Juhyong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.4
    • /
    • pp.33-37
    • /
    • 2016
  • The hydration process of Controlled Low Strength Material (CLSM) used for backfill is the primary factor to determine the construction period. The objective of this study is to monitor the hydration process of CLSM using the Time Domain Reflectometry (TDR) and to establish the relationship between dielectric constant and compressive strength. The CLSM specimen is composed of cement, flyash, silt, sand, accelerator, and water. The material characteristics of the CLSM including flow, unit weight, compressive strength are investigated. To measure the dielectric constant of the CLSM during the curing time, TDR probe incorporated with a mold and a reflectometer are used. Experimental results show that the dielectric constant remains constant at early stage, and then decreases as the curing time increases. In addition, the dielectric constant is related to the compressive strength in inverse power function. This paper suggests that the TDR technique may be used as a non-destructive testing method in order to estimate the compressive strength of the CLSM mixture under construction.

Development of Moisture Loss Index Based on Field Moisture Measurement using Portable Time Domain Reflectometer (TDR) for Cold In-place Recycled Pavements (휴대용 TDR 함수량계로 측정한 현장 함수비를 이용한 현장 상온 재활용 아스팔트 포장의 수분 감소계수 개발)

  • Kim, Yong-Joo;Lee, Ho-Sin David;Im, Soo-Hyok
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.139-145
    • /
    • 2011
  • The practice of asphalt pavement recycling has grown rapidly over the decade, one of which is the cold in-place recycling with the foamed asphalt (CIR-foam) or the emulsified asphalt (CIR-emulsion). Particularly, in Iowa, the CIR has been widely used in rehabilitating the rural highways because it significantly increases the service life of the existing pavement. The CIR layer is typically overlaid by the hot mix asphalt (HMA) to protect it from water ingress and traffic load and obtain the required pavement structure and texture. Most public agencies have different curing requirements based on the number of curing days or the maximum moisture contents for the CIR before placing the overlay. The main objective of this study is to develop a moisture loss index that the public agency can use to monitor the moisture content of CIR layers in preparation for a timely placement of the wearing surface. First, the moisture contents were measured in the field using a portable time domain reflectometry (TDR) device. Second, the weather information in terms of rain fall, air temperature, humidity and wind speed was collected from the same location. Finally, a moisture loss index was developed as a function of initial moisture content, air temperature, humidity and wind speed. The developed moisture loss index based on the field measurements would help the public agency to determine an optimum timing of an overlay placement without continually measuring moisture conditions in the field.

A Study on a Leakage Sensing Pipe and Monitoring System Using TDR in GIS (GIS상에서 TDR을 사용한 누수감지관과 모니터링 시스템에 관한 연구)

  • 강병모;홍인식
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.4
    • /
    • pp.567-578
    • /
    • 2004
  • GIS technique enhanced a space data manipulation ability and we are offering a geographic information service through various analysis. The quantity used of the water was increased in such situation according to a population increase and a city concentration phenomenon. But, to secure clear water are difficult, owing to the water shortage phenomenon, seepage and the quality of water change for worse. We decide the seepage and the system to retrieve the seepage location using GIS in order to reduce vast loss from the seepage. In this paper we proposed Leakage Sensing System using TDR technology in GIS, constructed a GIS database and pilot system to prove the validity, and simulated it using TDR in GIS.

  • PDF

Analysis of Saturation and Ground Water Level at Embankment by TDR Sensor (TDR센서를 이용한 제방의 포화도 및 지하수위 해석)

  • Kim, Ki-Young;Han, Heui-Soo;Lee, Jae-Ho;Park, Min-Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.2
    • /
    • pp.63-72
    • /
    • 2011
  • The measured ground water behavior by TDR (time domain reflectometer) sensors were analyzed by the data filtering technique such as moving average method and Fourier transform, and the ground water level and unsaturated zone were tried to be determined numerically. At first, the variation of TDR data according to the saturation degree was measured by lab test, which is translated as a function of saturation degree. Then, changes of ground water level and lateral seepage in field conditions were simulated using acrylic pipe, and the measured data were analyzed to make calibration curve. Furthermore, TDR sensors were installed into the in-situ embankment to insure the field application. The saturation degree, unsaturated and dried zones were determined from the measured data.

A Study on the Seepage Behavior of Embankment with Weak Zone using Numerical Analysis and Model Test (취약대를 가진 모형제방의 침투거동에 관한 연구)

  • Park, Mincheol;Im, Eunsang;Lee, Seokyoung;Han, Heuisoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.7
    • /
    • pp.5-13
    • /
    • 2016
  • This research is focused on the seepage behavior of embankment which had the weak zone with big permeability. The distributed TDR (Time Domain Reflectometer) and point sensors such as settlement gauge, pore water pressuremeter, vertical total stressmeter, and FDR (Frequency Domain Reflectometer) sensor were used to measure the seepage characteristics and embankment behavior. Also, the measured data were compared to the data of 2-D and 3-D numerical analysis. The dimension of model embankment was 7 m length, 5 m width and 1.5 m height, which is composed of fine-grained sands and the water level of embankment was 1.3 m height. The seepage behavior of measuring and numerical analysis were very similar, it means that the proper sensing system can monitor the real-time safety of embankment. The result by 2-D and 3-D numerical analysis showed similar saturation processing, however in case of weak zone, the phreatic lines of 2-D showed faster movement than that of 3-D analysis, and finally they converged.