• 제목/요약/키워드: time dependent coefficients

검색결과 174건 처리시간 0.026초

원주주위를 지나는 흐름에 관한 수치해석 (Numerical Solutions for the Flow past a Cylinder)

  • 조용식;윤태훈
    • 물과 미래
    • /
    • 제21권3호
    • /
    • pp.291-291
    • /
    • 1988
  • 2차원 흐름이 원주주위를 지날 때 발생하는 흐름의 변화가 기본방정식인 연속방정식과 운동량방정식에 의하여 수치적으로 해석된다. 수치해석 과정은 기본방정식에 유함수, 와도 및 흐름의 특성을 나타내는 무차원 매개변수를 도입하여 무차원 유함수-와소수송식을 유도한 후, successive over relaxation scheme과 alternating direct implicit scheme으로 수행된다. 수치실험은 레이놀즈수 125-275를 기존의 수치해석에서는 주로 수치실험 결과와 비교한다. 원주표면의 압력을 구하는 방법에 있어서 기존의 수치해석에서는 주로 방사 운동량방정식만을 사용하였으나, 본 논문에서는 기존의 방법외에 방사 운동량방정식 및 접선 운동량방정식에 의해 압력을 계한하고, 두 값을 비교하여 레이놀즈수에 따른 압력을 구하는 방법을 제시한다. 또한 와도의 분포를 도시하여 원주에 의한 후류의 영향을 받지 않는 외부경계의 한계를 새로이 설정한다.

원주주위를 지나는 흐름에 관한 수치해석 (- Numerical Solutions for the Flow past a Cylinder-)

  • 조용식;윤태훈
    • 물과 미래
    • /
    • 제31권4호
    • /
    • pp.291-297
    • /
    • 1998
  • 2차원 흐름이 원주주위를 지날 때 발생하는 흐름의 변화가 기본방정식인 연속방정식과 운동량방정식에 의하여 수치적으로 해석된다. 수채해석 과정은 기본방정식에 유함수, 와도 및 흐름의 특성을 나타내는 무차원 매개변수를 도입하여 무차원 유함수-와소수송식을 유도한후, successive over relaxation scheme과 alternating direct implicit scheme으로 수행된다. 수치실험은 레이놀즈수 125-275를 갖는 흐름에 대하여 수행되었으며, 시간에 따른 유선, 와도, 원주표면의 압력을 구하는 방법에 있어서 기존의 수치해석에서는 주로 방사 운동량방정식만을 사용하였으나, 본 논문에서는 기존의 방법외에 방사 운동량방정식 및 접선 운동량방정식에 의해 압력을 계한하고, 두값을 비교하여 레이놀즈수에 따른 압력을 구하는 방법을 제시한다. 또한 와도의 분포를 도시하여 원주에 의한 후류의 영향을 받지 않는 외부경계의한계를 새로이 설정한다.

  • PDF

초고층 내력벽식 구조물의 기둥축소량에 대한 확률론적 예측 및 현장계측 (Probabilistic Prediction and Field Measurement of Column Shortening for Tall Building with Bearing Wall System)

  • 송화철;윤광섭
    • 콘크리트학회논문집
    • /
    • 제18권1호
    • /
    • pp.101-108
    • /
    • 2006
  • 초고층건물에서 발생하는 부등축소량은 기둥과 코어를 연결하는 보와 슬래브에서의 부가응력을 유발하거나 파티션과 커튼월의 균열과 같은 문제 등을 유발하므로, 부등축소량의 영향을 최소화하기 위해 기둥축소량의 예측 및 보정이 정확히 이루어져야 하며, 구조안전성과 사용성의 관점에서 시간변화에 따른 초고층건물 기둥축소량의 정확한 예측이 필요하다. 기둥축소량에 영향을 주는 콘크리트의 재료물성치 중 콘크리트강도, 크리프계수, 건조수축계수 등의 변동성을 고려하여 확률론적 해석을 이용한 기둥축소량 예측을 하여야 한다. 본 논문에서는 41층 초고층 내력벽식 구조물을 예제로 하여 몬테카를로 기법을 이용한 확률론적 축소량을 구하고 축소량의 분포도를 조사하여 신뢰수준별 기둥축소량을 분석하였다. 초고층 내력벽식 구조물예제에서 현장계측된 변형값은 해석에 의한 결과값보다 전체적으로 작으며, 확률론적으로 신뢰구간 ${\mu}-1.645{\sigma}$(신뢰수준 90.0% 하한치)이내의 값을 나타내었다.

Nonlinear fluid-structure interaction of bridge deck: CFD analysis and semi-analytical modeling

  • Grinderslev, Christian;Lubek, Mikkel;Zhang, Zili
    • Wind and Structures
    • /
    • 제27권6호
    • /
    • pp.381-397
    • /
    • 2018
  • Nonlinear behavior in fluid-structure interaction (FSI) of bridge decks becomes increasingly significant for modern bridges with increasing spans, larger flexibility and new aerodynamic deck configurations. Better understanding of the nonlinear aeroelasticity of bridge decks and further development of reduced-order nonlinear models for the aeroelastic forces become necessary. In this paper, the amplitude-dependent and neutral angle dependent nonlinearities of the motion-induced loads are further highlighted by series of computational fluid dynamics (CFD) simulations. An effort has been made to investigate a semi-analytical time-domain model of the nonlinear motion induced loads on the deck, which enables nonlinear time domain simulations of the aeroelastic responses of the bridge deck. First, the computational schemes used here are validated through theoretically well-known cases. Then, static aerodynamic coefficients of the Great Belt East Bridge (GBEB) cross section are evaluated at various angles of attack, leading to the so-called nonlinear backbone curves. Flutter derivatives of the bridge are identified by CFD simulations using forced harmonic motion of the cross-section with various frequencies. By varying the amplitude of the forced motion, it is observed that the identified flutter derivatives are amplitude-dependent, especially for $A^*_2$ and $H^*_2$ parameters. Another nonlinear feature is observed from the change of hysteresis loop (between angle of attack and lift/moment) when the neutral angles of the cross-section are changed. Based on the CFD results, a semi-analytical time-domain model for describing the nonlinear motion-induced loads is proposed and calibrated. This model is based on accounting for the delay effect with respect to the nonlinear backbone curve and is established in the state-space form. Reasonable agreement between the results from the semi-analytical model and CFD demonstrates the potential application of the proposed model for nonlinear aeroelastic analysis of bridge decks.

로봇팔의 최적 기하학적 경로 및 시간최소화 운동 (Optimal Geometric Path and Minimum-Time Motion for a Manipulator Arm)

  • 박종근;한성현;김태한;이상탁
    • 한국정밀공학회지
    • /
    • 제16권12호
    • /
    • pp.204-213
    • /
    • 1999
  • This paper suggests a numerical method of finding optimal geometric path and minimum-time motion for a manipulator arm. To find the minimum-time motion, the optimal geometric path is searched first, and the minimum-time motion is searched on this optimal path. In the algorithm finding optimal geometric path, the objective function is minimizing the combination of joint velocities, joint-jerks, and actuator forces as well as avoiding several static obstacles, where global search is performed by adjusting the seed points of the obstacle models. In the minimum-time algorithm, the traveling time is expressed by the linear combinations of finite-term quintic B-splines and the coefficients of the splines are obtained by nonlinear programming to minimize the total traveling time subject to the constraints of the velocity-dependent actuator forces. These two search algorithms are basically similar and their convergences are quite stable.

  • PDF

비선형 대변형 유한요소법을 이용한 열가소성 고무부품의 밀봉성능 예측 (Sealing Performance Prediction of Thermoplastic Rubber Component using Non-linear Large Deformation F.E.M.)

  • 박선;이신영;강은
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.669-673
    • /
    • 2001
  • The objective of this paper is to predict and evaluate the sealing performance of the thermoplastic rubber component in the proto-design stage. The large strain and large deformation properties of rubber are modeled by strain energy function and the related material constants are calculated from the test data. The viscoelastic property of the rubber is also considered using the coefficients in a Prony series representation of a viscoelastic modulus ken the compression stress relaxation test. The results show that the current design of cap mount system has 2-different stiffness caused by the cap-mount contact and the viscoelastic property of rubber plays an important role in time dependent deformation.

  • PDF

Mellin 변환을 이용한 격리 단어 인식 (An Isolated Word Recognition Using the Mellin Transform)

  • 김진만;이상욱;고세문
    • 대한전자공학회논문지
    • /
    • 제24권5호
    • /
    • pp.905-913
    • /
    • 1987
  • This paper presents a speaker dependent isolated digit recognition algorithm using the Mellin transform. Since the Mellin transform converts a scale information into a phase information, attempts have been made to utilize this scale invariance property of the Mellin transform in order to alleviate a time-normalization procedure required for a speech recognition. It has been found that good results can be obtained by taking the Mellin transform to the features such as a ZCR, log energy, normalized autocorrelation coefficients, first predictor coefficient and normalized prediction error. We employed a difference function for evaluating a similarity between two patterns. When the proposed algorithm was tested on Korean digit words, a recognition rate of 83.3% was obtained. The recognition accuracy is not compatible with the other technique such as LPC distance however, it is believed that the Mellin transform can effectively perform the time-normalization processing for the speech recognition.

  • PDF

Novel Smart Polymeric Composites for Thermistors and Electromagnetic Wave Shielding Effectiveness from TiC Loaded Styrene-Butadiene Rubber

  • Sung, Yong-Kiel;Farid EI-Tantawy
    • Macromolecular Research
    • /
    • 제10권6호
    • /
    • pp.345-358
    • /
    • 2002
  • The electrical conductivity during vulcanization process was measured as a function of time for the system of TiC loaded styrene-butadiene rubber (SBR) composites. The phenomenon of negative and positive temperature coefficients of conductivity and its conduction mechanism were also studied for the SBR polymeric composites. The current-voltage characteristics of the polymeric composites were non-linear in high voltage and showed a switching effect. The effects of temperature on the thermal conductivity and effective dielectric constant were measured. The measured parameters were found to be dependent on TiC concentration. The electromagnetic wave shielding (EMS) of the SBR-TiC polymeric composite was also examined. The SBR filled with TiC could be expected to be promising novel smart polymeric composites for self-electrical heating, temperature sensor, time delay switching, and electro-magnetic wave shielding effectiveness.

Stability of suspension bridge catwalks under a wind load

  • Zheng, Shixiong;Liao, Haili;Li, Yongle
    • Wind and Structures
    • /
    • 제10권4호
    • /
    • pp.367-382
    • /
    • 2007
  • A nonlinear numerical method was developed to assess the stability of suspension bridge catwalks under a wind load. A section model wind tunnel test was used to obtain a catwalk's aerostatic coefficients, from which the displacement-dependent wind loads were subsequently derived. The stability of a suspension bridge catwalk was analyzed on the basis of the geometric nonlinear behavior of the structure. In addition, a full model test was conducted on the catwalk, which spanned 960 m. A comparison of the displacement values between the test and the numerical simulation shows that a numerical method based on a section model test can be used to effectively and accurately evaluate the stability of a catwalk. A case study features the stability of the catwalk of the Runyang Yangtze suspension bridge, the main span of which is 1490 m. Wind can generally attack the structure from any direction. Whenever the wind comes at a yaw angle, there are six wind load components that act on the catwalk. If the yaw angle is equal to zero, the wind is normal to the catwalk (called normal wind) and the six load components are reduced to three components. Three aerostatic coefficients of the catwalk can be obtained through a section model test with traditional test equipment. However, six aerostatic coefficients of the catwalk must be acquired with the aid of special section model test equipment. A nonlinear numerical method was used study the stability of a catwalk under a yaw wind, while taking into account the six components of the displacement-dependent wind load and the geometric nonlinearity of the catwalk. The results show that when wind attacks with a slight yaw angle, the critical velocity that induces static instability of the catwalk may be lower than the critical velocity of normal wind. However, as the yaw angle of the wind becomes larger, the critical velocity increases. In the atmospheric boundary layer, the wind is turbulent and the velocity history is a random time history. The effects of turbulent wind on the stability of a catwalk are also assessed. The wind velocity fields are regarded as stationary Gaussian stochastic processes, which can be simulated by a spectral representation method. A nonlinear finite-element model set forepart and the Newmark integration method was used to calculate the wind-induced buffeting responses. The results confirm that the turbulent character of wind has little influence on the stability of the catwalk.

활액과 하이얼루러난이 소 연골의 마찰 특성에 작용하는 역할 (The Role of Synovial Fluid and Hyaluronan in the Frictional Response of Bovine Articular Cartilage)

  • 박성훈
    • 한국정밀공학회지
    • /
    • 제25권10호
    • /
    • pp.137-143
    • /
    • 2008
  • The objective of this study was to characterize the role of synovial fluid and hyaluronan in the frictional response of bovine articular cartilage. Seven cylindrical cartilage specimens were harvested from three fresh bovine humoral heads (4-6 months old). Reciprocal sliding motion (1mm/s) was provided by a custom-made friction testing apparatus with a normal load of 22.3 N. From the measured time-dependent normal and frictional forces, the minimum and maximum frictional coefficients were calculated. Synovial fluid reduced the minimum frictional coefficient by ${\sim}75$ % and maximum frictional coefficient by ${\sim}11%$, while the reduction of the minimum and maximum frictional coefficients with hyaluronan was ${\sim}42%$ and ${\sim}24%$, respectively. To the best of our knowledge, this experimental study investigates the first such comparisons of frictional response of articular cartilage with and without synovial fluid and hyaluronan, and provides significant insights into their role in the articular cartilage friction and lubrication.