Novel Smart Polymeric Composites for Thermistors and Electromagnetic Wave Shielding Effectiveness from TiC Loaded Styrene-Butadiene Rubber

  • Sung, Yong-Kiel (Department of Chemistry, College of Science, Dongguk University) ;
  • Farid EI-Tantawy (Department of Physics, Faculty of Science, Suez Canal University)
  • Published : 2002.12.01

Abstract

The electrical conductivity during vulcanization process was measured as a function of time for the system of TiC loaded styrene-butadiene rubber (SBR) composites. The phenomenon of negative and positive temperature coefficients of conductivity and its conduction mechanism were also studied for the SBR polymeric composites. The current-voltage characteristics of the polymeric composites were non-linear in high voltage and showed a switching effect. The effects of temperature on the thermal conductivity and effective dielectric constant were measured. The measured parameters were found to be dependent on TiC concentration. The electromagnetic wave shielding (EMS) of the SBR-TiC polymeric composite was also examined. The SBR filled with TiC could be expected to be promising novel smart polymeric composites for self-electrical heating, temperature sensor, time delay switching, and electro-magnetic wave shielding effectiveness.

Keywords

References

  1. Eur. Polym. J v.37 F. El-Tantawy https://doi.org/10.1016/S0014-3057(00)00134-8
  2. Polym. International v.49 F. El-Tantawy;A. Bakry;A. R. El-Gohary https://doi.org/10.1002/1097-0126(200012)49:12<1670::AID-PI589>3.0.CO;2-I
  3. Appl. Phys. Commun. v.9 H. H. Hassan;E. M. Abdel-Bary
  4. Polym. Deg. Stab v.68 J. Prokes;I. Krivka;J. Stejskal https://doi.org/10.1016/S0141-3910(00)00009-4
  5. Polym. J. v.30 Y. Chekanov;R. Ohnogi;S. Asai;M. Sumita https://doi.org/10.1295/polymj.30.381
  6. Jpn. J. Appl. Phys. v.32 K. Yoshino https://doi.org/10.1143/JJAP.32.979
  7. Synthetic Metals v.69 X. H. Yin https://doi.org/10.1016/0379-6779(94)02489-L
  8. J. Mater. Proc. Tech. v.68 M. H. Ali;A. Abo-Hashem https://doi.org/10.1016/S0924-0136(96)00023-4
  9. Eur. Polym. J. v.35 N. S. Saxena https://doi.org/10.1016/S0014-3057(98)00247-X
  10. Polym. Testing. v.15 M. M. Badawy https://doi.org/10.1016/0142-9418(96)00011-6
  11. Polym. J. v.21 Y. Fujikura; M. Kawarai;F. Ozaki https://doi.org/10.1295/polymj.21.609
  12. Polym. J. v.29 T. G. Gopakumar https://doi.org/10.1295/polymj.29.884
  13. Polym. J. v.28 W. Hopark
  14. Polym. J. v.29 D. Saraydin https://doi.org/10.1295/polymj.29.631
  15. Polym. J. v.29 J. Shan https://doi.org/10.1295/polymj.29.580
  16. Polym. J. v.31 M. Okazaki https://doi.org/10.1295/polymj.31.672
  17. Physica v.270 H. Tagachi
  18. Eur. Polym. J. v.36 P. Ghosh;A. Chakrabarti https://doi.org/10.1016/S0014-3057(99)00157-3
  19. Polym. J. v.28 L. Karasek https://doi.org/10.1295/polymj.28.121
  20. J. Chem. Phys v.18 P. J. Flory https://doi.org/10.1063/1.1747424
  21. J. Mater. Sci. v.31 K. M. Sumita https://doi.org/10.1007/BF01139141
  22. Eur. Polym. J. v.35 N. S. Saxena;P. Pradeep https://doi.org/10.1016/S0014-3057(98)00247-X
  23. Polym. Deg. Stab. v.63 M. Baba https://doi.org/10.1016/S0141-3910(98)00080-9
  24. Radiation Phys. Chem. v.53 P. S. Majumder
  25. Polym. Eng. Sci. v.37 M .C. Chan https://doi.org/10.1002/pen.11757
  26. Eur. Polym. J. v.32 H. Tang;X. Chen;Y. Luo https://doi.org/10.1016/0014-3057(96)00026-2
  27. Polym. Eng. Sci. v.39 C. Yuksekkalayci https://doi.org/10.1002/pen.11508
  28. Poymer v.41 S. George
  29. Polym. Testing v.16 N. Sombatsompop;A. K. Wood https://doi.org/10.1016/S0142-9418(96)00043-8
  30. Polymer v.39 K. P. Sau;T. K. Chaki;D. Khastgir
  31. Thermochimica Acta v.320 H. Ishida;S. Rimdusit https://doi.org/10.1016/S0040-6031(98)00463-8
  32. Mater. Sci. Eng v.38 H. R. Kokabi;M. Rapeaux;J. Aymami https://doi.org/10.1016/0921-5107(95)01504-3