• Title/Summary/Keyword: time allocation

Search Result 1,492, Processing Time 0.025 seconds

Optimized Module Design for Berth Planning of Logistics Information System Using Tabu Search Algorithm (타부탐색을 이용한 물류정보시스템의 선석계획 최적화 모듈 설계)

  • Hong, Dong-Hee;Kim, Chang-Gon
    • The KIPS Transactions:PartB
    • /
    • v.11B no.1
    • /
    • pp.63-70
    • /
    • 2004
  • Port operation is largely divided into gate operation, yard operation and berth operation. Operation strategy and optimal resource allocation for three parts are important in the productivity of the port operation.. Especially the resource allocation planning in berth operation needs optimization, because it is directly connected with the processing time in shipping. Berth planning is not independent on recourse allocation but interrelated with yard stacking area allocation. Therefore, we design the optimized module of berth planning and give priority to interrelationship with yard space allocation, while existing studies design independent resource allocation in berth planning. We suggest constraints by mathematical method, and they are related to yard stacking area allocation with existing constraints. Then we look for solutions, use tabu search to optimize them, and design optimized the berth planning module. In the performance test of optimized module design of berth planning, we find that the berth planning with yard stacking area allocation takes less processing time than without yard stacking area allocation.

Fairness-insured Aggressive Sub-channel Allocation and Efficient Power Allocation Algorithms to Optimize the Capacity of an IEEE 802.16e OFDMA/TDD Cellular System

  • Ko, Sang-Jun;Chang, Kyung-Hi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.4
    • /
    • pp.385-398
    • /
    • 2009
  • This paper aims to find a suitable solution to joint allocation of sub-channel and transmit power for multiple users in an IEEE 802.16e OFDMA/TDD cellular system. We propose the FASA (Fairness insured Aggressive Sub-channel Allocation) algorithm, which is a dynamic channel allocation algorithm that considers all of the users' channel state information conditionally in order to maximize throughput while taking into account fairness. A dynamic power allocation algorithm, i.e., an improved CHC algorithm, is also proposed in combination with the FASA algorithm. It collects the extra downlink transmit power and re-allocates it to other potential users. Simulation results show that the joint allocation scheme with the improved CHC power allocation algorithm provides an additional increase of sector throughput while simultaneously enhancing fairness. Four frames of time delay for CQI feedback and scheduling are considered. Furthermore, by addressing the difference between uplink and downlink scheduling in an IEEE 802.16e OFDMA TDD system, we can employ the uplink channel information directly via channel sounding, resulting in more accurate uplink dynamic resource allocation.

On-demand Allocation of Multiple Mutual-compensating Resources in Wireless Downlinks: a Multi-server Case

  • Han, Han;Xu, Yuhua;Huang, Qinfei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.921-940
    • /
    • 2015
  • In this paper, we investigate the multi-resource allocation problem, a unique feature of which is that the multiple resources can compensate each other while achieving the desired system performance. In particular, power and time allocations are jointly optimized with the target of energy efficiency under the resource-limited constraints. Different from previous studies on the power-time tradeoff, we consider a multi-server case where the concurrent serving users are quantitatively restricted. Therefore user selection is investigated accompanying the resource allocation, making the power-time tradeoff occur not only between the users in the same server but also in different servers. The complex multivariate optimization problem can be modeled as a variant of 2-Dimension Bin Packing Problem (V2D-BPP), which is a joint non-linear and integer programming problem. Though we use state decomposition model to transform it into a convex optimization problem, the variables are still coupled. Therefore, we propose an Iterative Dual Optimization (IDO) algorithm to obtain its optimal solution. Simulations show that the joint multi-resource allocation algorithm outperforms two existing non-joint algorithms from the perspective of energy efficiency.

Bus 형 LAN의 Contention-Token 혼합형 프로토콜에 관한 연구

  • 김정선
    • Information and Communications Magazine
    • /
    • v.4 no.4
    • /
    • pp.505-524
    • /
    • 1987
  • Nowaday all the countries of the world have studied the various problems caused in operating their own ports efficiently. Ship delay in the port is attributal to the inefficient operation in the navigation aids, the cargo handling, the storage and transfer facilities, and to the inefficient allocation of gangs or to a bad service for ships. Among these elements the allocation of gangs is the predominating factor in minimizing ship's turn round time. At present, in the case of Pusan Port. the labour union and stevedoring companies allocate gangs in every hatches of ships by a rule of thumb, just placing emphasis on minimizing ship's turn round time, without applying the principle of allocation during the cargo handling. Owing to this the efficiency of the cargo handling could not be expected to be maximized and this unsystematic operation result in supplying human resources of much unnecessary surplus gangs. Therefore in this paper the optimal size and allocation of gangs for minimizing the ship's turn round time is studied and formularized. For the determination of the priority for allocation the evaluation function, namely $F=PHi^{n}{\times}(W+H)$, can be obtained; where, PHI : Principal Hatch Index W : Total Cargo Weight represented in Gang-Shifts H : Total Number of Ship's hatches and also for the optimal size of gangs the average number of gang allocated per shift (Ng), namely Ng=W/PHI, is used. The proposed algorithm is applied to Pusan Port and its validity is verified.

  • PDF

A Novel Prediction-based Spectrum Allocation Mechanism for Mobile Cognitive Radio Networks

  • Wang, Yao;Zhang, Zhongzhao;Yu, Qiyue;Chen, Jiamei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.9
    • /
    • pp.2101-2119
    • /
    • 2013
  • The spectrum allocation is an attractive issue for mobile cognitive radio (CR) network. However, the time-varying characteristic of the spectrum allocation is not fully investigated. Thus, this paper originally deduces the probabilities of spectrum availability and interference constrain in theory under the mobile environment. Then, we propose a prediction mechanism of the time-varying available spectrum lists and the dynamic interference topologies. By considering the node mobility and primary users' (PUs') activity, the mechanism is capable of overcoming the static shortcomings of traditional model. Based on the mechanism, two prediction-based spectrum allocation algorithms, prediction greedy algorithm (PGA) and prediction fairness algorithm (PFA), are presented to enhance the spectrum utilization and improve the fairness. Moreover, new utility functions are redefined to measure the effectiveness of different schemes in the mobile CR network. Simulation results show that PGA gets more average effective spectrums than the traditional schemes, when the mean idle time of PUs is high. And PFA could achieve good system fairness performance, especially when the speeds of cognitive nodes are high.

Mixed Control of Agile Missile with Aerodynamic Fin and Thrust Vectoring Control (유도탄의 유도명령 추종을 위한 혼합제어기 설계 : 공력 및 추력벡터제어)

  • 이호철;최용석;송택렬;송찬호;최재원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.7
    • /
    • pp.658-668
    • /
    • 2004
  • This paper is concerned with a control allocation strategy using the dynamic inversion and the pseudo inverse control which generates the nominal control input trajectories. In addition, an autopilot design method is proposed by using time-varying control technique which is time-varying version of the pole placement of linear time-invariant system for an agile missile with aerodynamic fin and thrust vectoring control. The control allocation proposed in this paper is capable of extracting the maximum performance by combining each control effector, aerodynamic fin and thrust vectoring control. The adopted time-varying control technique for the autopilot design enhances the robustness of the tracking performance for a reference command. The main results are validated through the nonlinear simulations with aerodynamic data.

Mixed Control of Agile Missile with Aerodynamic Fin and Thrust Vectoring Control (공력 및 추력을 이용한 유도탄의 혼합제어기 설계(I))

  • 이호철;최용석;최재원;송택렬;송찬호
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.122-130
    • /
    • 2003
  • This paper is concerned with a control allocation strategy using the dynamic inversion and the pseudo inverse control which generates the nominal control input trajectories, and autopilot design using time-varying control technique which is time-varying version of pole placement of linear time-invariant system for an agile missile with aerodynamic fin and thrust vectoring control. Control allocation of this paper is capable of extracting the maximum performance from each control effector, aerodynamic fin and thrust vectoring control, by combining the action of them. Time-varying control technique for autopilot design enhance the robustness of the tracking performance for a reference command. The main results are validated through the nonlinear simulation.

A Bicriterion Scheduling Problems with Time/Cost Trade-offs (시간/비용의 트레이드-오프를 고려한 2목적 스케쥴링 문제)

  • 정용식;강동진
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.4 no.2
    • /
    • pp.81-87
    • /
    • 1999
  • This paper discusses a bicriterion approach to sequencing with time/cost trade-offs. The first problem is to minimize the total flow time and the maximum tardiness. And second is to the maximum tardiness and resource allocation costs. This approach, which produces an efficient flintier of possible schedules, has the advantage that it does not require the sequencing criteria to be measurable in the same units as the m allocation cost. The basic single machine model is used to treat a class of problems in which the sequencing objective is to minimize the maximum completion penalty. It is further assumed that resource allocation costs can be represented by linear time/cost function.

  • PDF

Allocation of energy and nutrients in phaseolus multiflorus willd. on environmental gradients (환경구배에 따른 붉은강남콩 ( Phaseolus multiflorus Willd. ) 의 에너지와 무기원소의 분배)

  • Kim, Ok-Kyung
    • The Korean Journal of Ecology
    • /
    • v.15 no.4
    • /
    • pp.345-354
    • /
    • 1992
  • Allocation patterns of energy and mineral elements were investigated with phaseolus multiflorus grown in the environmental gradients. The result showed different energy allocation patterns according to relative light intensities and nutrients. The optimal switching time of energy allocation from vegetative to resproductive growth was delated as decreasing relative light intensity. The switch of the shift to reproduction was timed earlier in phosphorus treatment and delayed in nitrogen treatment. Analyzing the mineral elements to various organs, patterns of energy allocation were different from those of mineral allocation. There was no significant difference for allocation patterns in relative light intensity gradients. it was shown that n and p were distributed over the reproductive organs, k mainly in stems, ca in leaves and na in roots. mg was evenly distributed in each organs.

  • PDF

A k-Tree-Based Resource (CU/PE) Allocation for Reconfigurable MSIMD/MIMD Multi-Dimensional Mesh-Connected Architectures

  • Srisawat, Jeeraporn;Surakampontorn, Wanlop;Atexandridis, Kikitas A.
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.58-61
    • /
    • 2002
  • In this paper, we present a new generalized k-Tree-based (CU/PE) allocation model to perform dynamic resource (CU/PE) allocation/deallocation decision for the reconfigurable MSIMD/MIMD multi-dimensional (k-D) mesh-connected architectures. Those reconfigurable multi-SIMD/MIMD systems allow dynamic modes of executing tasks, which are SIMD and MIMD. The MIMD task requires only the free sub-system; however the SIMD task needs not only the free sub-system but also the corresponding free CU. In our new k-Tree-based (CU/PE) allocation model, we introduce two best-fit heuristics for the CU allocation decision: 1) the CU depth first search (CU-DFS) in O(kN$_{f}$ ) time and 2) the CU adjacent search (CU-AS) in O(k2$^{k}$ ) time. By the simulation study, the system performance of these two CU allocation strategies was also investigated. Our simulation results showed that the CU-AS and CU-DFS strategies performed the same system performance when applied for the reconfigurable MSIMD/MIMD 2-D and 3-D mesh-connected architectures.

  • PDF