• 제목/요약/키워드: time/temperature control

검색결과 2,341건 처리시간 0.033초

Immune Based 2-DOF PID Controller Design for Complex Process Control

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.70.2-70
    • /
    • 2002
  • In the thermal power plant, it is difficult to maintain strict control of the steam temperature in order to avoid thermal stress, because of variation of the heating value according to the fuel source, the time delay of changes in main steam temperature versus changes in fuel flow rate, difficulty of control on the main steam temperature control and the reheater steam temperature control system owing to the dynamic response characteristics of changes in steam temperature and the reheater steam temperature, fluctuation of inner fluid water and steam flow rates widely during load-following operation. Up to the present time, the PID controller has been used to operate this system...

  • PDF

바닥 복사난방 시스템의 실내온도 제어방안에 관한 시뮬레이션 연구 (Simulation Study for Control Strategies of Indoor Air Temperature in Floor Radiant Heating System)

  • 송재엽;안병천
    • 한국지열·수열에너지학회논문집
    • /
    • 제12권4호
    • /
    • pp.21-26
    • /
    • 2016
  • In this study, the control strategies of indoor air temperature in floor radiant heating system were researched by computer simulation. The temperature difference based time control method using the difference of indoor set temperature and indoor temperature is compared with the existing On-Off control one for heating control performances. As a result, the temperature difference based time control method shows better thermal environmental characteristics in case of selected operational conditions in comparison with existing control one.

Physical property control for a batch polymerization reactor

  • Kim, In-Sun;Ahn, Sung-Mo;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.263-266
    • /
    • 1996
  • A method to determine an optimal temperature trajectory that guarantees polymer products having controlled molecular weight distribution and desired values of molecular weight is presented. The coordinate transformation method and the optimal control theory are applied to a batch PMMA polymerization system to calculate the optimal temperature trajectory. Coordinate transformation method converts the original fixed-end-point, free-end-time problem to a free-end-point, fixed-end-time problem. The idea is that by making the reactor temperature track the optimal temperature trajectory one may be able to produce polymer products having the prespecified physical property in a minimum time. The on-line control experiments with the PID control algorithm have been conducted to establish the validity of the scheme proposed in this study. The experimental results show that prespecified polymer product could be obtained with tracking the calculated optimal temperature trajectory.

  • PDF

적응최적시간제어를 사용한 전기로의 온도제어 (Temperature Control of Electric Furnaces using Adaptive Time Optimal Control)

  • 전봉근;송창섭;금영탁
    • 한국정밀공학회지
    • /
    • 제26권5호
    • /
    • pp.120-127
    • /
    • 2009
  • An electric furnace, inside which desired temperatures are kept constant by generating heat, is known to be a difficult system to control and model exactly because system parameters and response delay time vary as the temperature and position are changed. In this study the heating system of ceramic drying furnaces with time-varying parameters is mathematically modeled as a second order system and control parameters are estimated by using a RIV (Recursive Instrumental-Variable) method. A modified bang-bang control with magnitude tuning is proposed in the time optimal temperature control of ceramic drying electric furnaces and its performance is experimentally verified. It is proven that temperature tracking of adaptive time optimal control using a second order model is more stable than the GPCEW (Generalized Predictive Control with Exponential Weight) and rapidly settles down by pre-estimation of the system parameters.

Hi-CON/H2 BAF와 HNx BAF의 소둔사이클 제어온도에 관한 연구 (A Study on Annealing Cycle Control Temperature of Hi - CON/2 BAF and HNx BAF)

  • 김문경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권1호
    • /
    • pp.114-122
    • /
    • 1994
  • A cold temperature control system for the BAF(batch annealing furnace) has been established in order to reduce energy consumption to imrpove productivity and stabilize the properties of products. Therefore we confirmed a relation between annealing cycle time and atmospheric gas, changing annealing cycle time according to BAF temperature with time during heating and actual temperature measurements cold spot during soaking. The results of the temperature variation effect on the batch annealing are as follows. 1) Cooling rate is increasing gradually with increasing atmospheric gas flow, but heating rate is hardly increasing without atmospheric gas component. Heating time is reduced to one half with increasing atmospheric gas flow rate and changing of atmospheric gas component from HNx to Ax gas and annealing cycle time is reduce to 2.7 times. 2) With enlarging the difference between furnace temperature and soaking temperature at the HNx BAF, heating time becomes short, but cooling time is indifferent. 3) If temperature difference of 300.deg. C in the temperature change of cold spot according to the annealing cycle control temperature, Hi-CON/H2BAF is interchanging at each other at 26hours, but HNxBAF at 50 hours. 4) Soaking time at batch annealing cycle determination is made a decision by the input coil width, and soaking time for quality homogenization of 1219 mm width coil must be 2.5 hours longer then that of 914mm width coil for the same coil weight at Hi-CON/H2BAF. But, it is necessary to make 2 hours longer at HNxBAF.

  • PDF

Anti-Windup Starting-Time Control Strategy for a First-Order-Plus-Dead-Time Model and Application of Extruder Temperature Control

  • Onogaki, Hitoshi;Yokoyama, Shuichi;Hamane, Hiroto;Kanouya, Kazuyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.70.4-70
    • /
    • 2002
  • $\textbullet$ Introduction $\textbullet$ PID Control and Two-Degree-Of-Freedom Control $\textbullet$ Switching Actuating Value By the 100% Actuating Value $\textbullet$ Application of Extruder Temperature Control $\textbullet$ Conclusion

  • PDF

Flexible Flat Cable 생산성 향상을 위한 가압용 히팅롤러의 온도제어개선 (Temperature Control Improvement of Pressure Heating Roller for Flexible Flat Cable Production)

  • 김재학;이호중;전경진
    • 한국정밀공학회지
    • /
    • 제22권7호
    • /
    • pp.155-163
    • /
    • 2005
  • Pressure heating rollers with temperature control were mounted to a flat cable laminating machine (FCLM). Pressure heating rollers should be heated up to the setting temperature $(175^{\circ}C)$ and kept on to producing good quality flexible flat cables (FFC). Existing Pressure heating rollers took more than 70minutes to the setting temperature and did not keep on the setting temperature in production. Temperature controller, electric power controller, material and diameter of rollers and heat capacities were changed to improve the temperature control of the pressure heat rollers for better production of the FFC. Thus, the reaching time to the setting temperature (RT), temperature stability time (TST) and temperature hunting (TH) were measured and compared with the existing pressure rollers case. The RT of A roller was shortened by 50minutes, and B roller was shortened by 15minutes. The TST of A roller was shortened by 13minutes, and B roller was shortened by 15minutes. The THs of both A and B rollers were settled up to ${\pm}5^{\circ}C$. Finally, the productivity of the FCLM and the quality of the FFC were increased.

Intelligent 2-DOF PID Control For Thermal Power Plant Using Immune Based Multiobjective

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1371-1376
    • /
    • 2003
  • In the thermal power plant, the main steam temperature is typically regulated by the fuel flow rate and the spray flow rate, and the reheater steam temperature is regulated by the gas recirculation flow rate. However, Strictly maintaining the steam temperature can be difficult due to heating value variation to the fuel source, time delay changes in the main steam temperature, the change of the dynamic characteristics in the reheater. Up to the present time, PID Controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error. This paper focuses on tuning of the 2-DOF PID Controller on the DCS for steam temperature control using immune based multiobjective approach. The stable range of a 2-DOF parameter for only this system could be found for the start-up procedure and this parameter could be used for the tuning problem. Therefore tuning technique of multiobjective based on immune network algorithms in this paper can be used effectively in tuning 2-DOF PID controllers.

  • PDF

고전고급제어(Conventional Advanced Control)를 이용한 TV 브라운관 유리 용해로의 온도제어에 관한 연구 (A Study on the Temperature Control of a TV-Glass Melting Furnace Using the Conventional Advanced Control)

  • 문은철;김흥식
    • 제어로봇시스템학회논문지
    • /
    • 제6권9호
    • /
    • pp.822-830
    • /
    • 2000
  • A conventional advanced control algorithm is proposed in this paper for improved temperature regulation of a TV-glass melting furnace. The TV-Glass melting furnace is a typical MIMO(Multi-Input Multi Output) system which is subject to various thermal disturbances. Because of its complexity, a detailed mathematical model of the furnace is hard to establish. To design a temperature control control system of the furnace, major input-output variables are selected first, and simple FOPDT(First Order Plus Dead Time) models are established based on the physical meaning and experimental process data. Based on the FOPDT models, a multi-loop control system composed of cascade and single loops are designed for effective control of the MIMO system. Practical implementation on the 150 ton/day furnace using the DCS(Distributed Control System) showed that the proposed control technique performs better than manual control.

  • PDF

퍼지논리를 이용한 저온저장고의 온도제어시스템 개발 (Development of Temperature Control System for Cold Storage Room Using Fuzzy Logic)

  • 양길모;고학균;조성인
    • Journal of Biosystems Engineering
    • /
    • 제25권2호
    • /
    • pp.107-114
    • /
    • 2000
  • Low temperature storage method is to increase the value of agricultural products by reducing quality loss and regulate consignment time by controlling respiration rates of agricultural products. Respiration rate of agricultural products depends on several factors such as temperature, moisture, gas composition and a microbe inside the storage room. Temperature is the most important factor among these, which affects respiration rate and causes low or high temperature damage. Fuzzy logic was used to control the temperature of a storage room ,which uses information of uncertain facts and mathematical model for room temperature control . Room temperature was controlled better by using fuzzy logic control method rather than on-off control method. Refrigerant flow rates and temperature deviations were measured for on-off system using TEV(temperature expansion valve) and for fuzzy system using EEV(Electrical Expansion Valve) . Temperature of the Storage room was lowered faster by using fuzzy system than on -off system. Temperature deviation was -0.6~+0.9$^{\circ}C$ for on-off system and $\pm$0.2$^{\circ}C$ for fuzzy system developed. Temperature deviation and variation of temperature deviation were used as inout parameters for fuzzy system. The most suitable input and output value were found by experiment. Cooling rate of the storage room decreased while temperature deviation increased for the sampling time of 20 sec.

  • PDF