• Title/Summary/Keyword: tillage

Search Result 414, Processing Time 0.02 seconds

Comparison of Growth, Yield and Yield Components among Rice Cultivars for Organic Farming in No-tillage Paddy

  • Son, Daniel;Lee, Young-Han
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.1
    • /
    • pp.1-6
    • /
    • 2010
  • Organic farming system in rice paddy is rapidly expanding in Korea. This study was to find out optimum japonica rice cultivars for organic farming. A field research was conducted to evaluate the characteristics of japonica rice cultivars under no-tillage paddy at Doo-ryangmyeon, Sacheon, Gyeongsangnam-do, Korea. The experimental soil was Juggog series (silty clay loam: 56.0% silt, 31.2% clay and 12.8% sand). In experiment, ten lines of Japanese rice cultivars were tested under no-tillage amended with rye (NTR) and no-tillage without cover crop treatment (NTNT). In addition, two Korean japonica rice cultivars as check cultivars were used in this study. The grain yield in NTR was significantly higher in 6.13 Mg $ha^{-1}$ for Kinuhikari, 5.30 Mg $ha^{-1}$ for Komekogane, 5.25 Mg $ha^{-1}$ for Kosihikari, 5.22 Mg $ha^{-1}$ for Mazizbare and 5.12 Mg $ha^{-1}$ for Akitakomachi compared to two Korean rice cultivars (4.57 Mg $ha^{-1}$ for Hwayoungbyeo and 4.00 Mg $ha^{-1}$ for Ilmibyeo) in that order. While, grain yield in NTNT was significantly higher in 4.90 Mg $ha^{-1}$ for Akitakomachi 3.81 Mg $ha^{-1}$ for Hinohikari, 3.74 Mg $ha^{-1}$ for Umezkusi, 3.67 Mg $ha^{-1}$ for Kosihikari and 3.54 Mg $ha^{-1}$ for Dondokuri compared to 3.02 Mg $ha^{-1}$ for Ilmibyeo and 2.36 Mg $ha^{-1}$ for Hwayoungbyeo, respectively. The number of panicle per $m^2$ and grain number per panicle were indispensible for increasing the yield of rice. These results were able to find out optimum japonica rice cultivar Akitakomachi for organic farming in no-tillage paddy.

Evaluation of Soil Loss with Surface Covering Methods Using Strip Tillage Seeding Device

  • Lee, Jeong-Tae;Ryu, Jong-Soo;Lee, Gye-Jun;Jung, Hee-Ju;Kim, Jeom-Soon;Park, Seok-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.425-431
    • /
    • 2014
  • Most fields in highland areas are covered with rye or hairy vetch for conservation during a fallow. However, using cover crops needs an effort to sow, and this makes top soil more vulnerable to loss due to surface disturbances. The aims of this study were to develop an automatic seeding-regulator device using a low-price, extensive-use GPS sensors and a DC motors and to evaluate a working efficiency of it after adaptation to partial tillage machine for reducing seeding effort. The amount of runoff water and soil loss was evaluated with partial tillage and simultaneous-seeding after harvesting soybean, in 17% slope lysimeters. In results, the seeding amount with the machine speed was stable between $0.5{\sim}0.8m\;s^{-1}$ of working sections. The automatic control device of seeding-rate could be enough to solve the slip problems of power selecting supply system or five four-wheel drive device. In partial tillage and simultaneous seeding, runoff water was 11.6% ($1.8m^3ha^{-1}$) of the scatter-seeding control ($15.5m^3ha^{-1}$) and soil loss was 13.2% ($7kg\;ha^{-1}$) of the scatter-seeding control ($53kg\;ha^{-1}$). These results suggest that partial tillage and simultaneous-seeding methods are very effective in decreasing work effort and soil loss of sloped land.

Pre-processing of load data of agricultural tractors during major field operations

  • Ryu, Myong-Jin;Kabir, Md. Shaha Nur;Choo, Youn-Kug;Chung, Sun-Ok;Kim, Yong-Joo;Ha, Jong-Kyou;Lee, Kyeong-Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.1
    • /
    • pp.53-61
    • /
    • 2015
  • Development of highly efficient and energy-saving tractors has been one of the issues in agricultural machinery. For design of such tractors, measurement and analysis of load on major power transmission parts of the tractors are the most important pre-requisite tasks. Objective of this study was to perform pre-processing procedures before effective analysis of load data of agricultural tractors (30, 75, and 82 kW) during major field operations such as plow tillage, rotary tillage, baling, bale wrapping, and to select the suitable pre-processing method for the analysis. A load measurement systems, equipped in the tractors, were consisted of strain-gauge, encoder, hydraulic pressure, and radar speed sensors to measure torque and rotational speed levels of transmission input shaft, PTO shaft, and driving axle shafts, pressure of the hydraulic inlet line, and travel speed, respectively. The entire sensor data were collected at a 200-Hz rate. Plow tillage, rotary tillage, baling, wrapping, and loader operations were selected as major field operations of agricultural tractors. Same or different farm works and driving levels were set differently for each of the load measuring experiment. Before load data analysis, pre-processing procedures such as outlier removal, low-pass filtering, and data division were performed. Data beyond the scope of the measuring range of the sensors and the operating range of the power transmission parts were removed. Considering engine and PTO rotational speeds, frequency components greater than 90, 60, and 60 Hz cut off frequencies were low-pass filtered for plow tillage, rotary tillage, and baler operations, respectively. Measured load data were divided into five parts: driving, working, implement up, implement down, and turning. Results of the study would provide useful information for load characteristics of tractors on major field operations.

Mapping of Cone Index for Precision Tillage (정밀 경운을 위한 원추지수 지도 작성)

  • Chong B. H.;Park Y. J.;Park H. K.;Park S. B.;Kim K. U.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.2 s.109
    • /
    • pp.127-133
    • /
    • 2005
  • Precision tillage is designed to till lands variably according to their firmness. Therefore, it is necessary to measure soil firmness in fields and present it in a form with which the variable tillage on be performed. Such forms may be classified into two categories: sensor-based and map-based forms. The map-based approach appears to be inevitable until the technology develops high enough to secure the sensor-based approaches. The first step for map-based precision tillage may be to develop a tillage recommendation map. In this study, a tractor-mountable automatic soil firmness measurement system was developed to construct a cone index map. The system is comprised of three ASAE Standard cone penetrometers and a hydraulic unit for controlling operation of the penetrometers. The system is designed to conduct stop-and-go measurements in fields. The measurements from the three penetrometers are transferred to a microcomputer and the average cone index was calculated. This average cone index was taken as soil firmness of the location where the measurement was made. The cone indices thus determined were used to construct a cone index map using the ArcView software. The system also displays the soil penetration resistance, cone index and soil depth as the cone penetrates into the soil. The field performance of the system was evaluated and the cone index maps at different depths were also presented.

Effect of Soil Texture and Tillage Method on Rice Yield and Methane Emission during Rice Cultivation in Paddy Soil

  • Cho, Hyeon-Suk;Seo, Myung-Chul;Kim, Jun-Hwan;Sang, Wan-gyu;Shin, Pyeong;Lee, Geon Hwi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.564-571
    • /
    • 2016
  • As the amount of rice straw collected increases, green manure crops are used to provide the needed organic matter. However, as green manure crops generate methane in the process of decomposition, we tested with different tillage depths in order to reduce the emission. The atmosphere temperature of the chamber was $25{\sim}40^{\circ}C$ during the examination of methane and soil temperature was $2{\sim}10^{\circ}C$ lower than air temperature. The redox potential (Eh) of the soil drastically fell right before irrigated transplanting and showed -300~-400 mV during the cultivating period of rice (7~106 days after transplant). When hairy vetch was incorporated to soil and the field was not irrigated, the generation of methane did not occur from 12 to 4 days before transplanting rice and started after irrigation. Regarding the pattern of methane generation during the cultivation of rice, methane was generated 7 days after transplanting, reached the pinnacle at by 63~74 days after transplanting, rapidly decreased after 86~94 days past transplanting and stopped after 106 days past transplanting. When tested by different soil types, methane emission gradually increased in loam and clay loam during early transplant, whereas it sharply increased in sandy loam. The total amount of methane emitted was highest in sandy loam, followed by loam and clay loam. In all three soil types, methane emission significantly reduced when tillage depth was 20 cm compared to 10 cm. The rice growths and yield were not affected by tillage depth. Therefore, reduction of methane emission could be achieved when application hairy vetch to the soil with tillage depth of 20 cm in paddy soil.

Occurrence Pattern and Control Method of Water - foxtail(Alopecurus aequalis Ohwi) in No - tillage Paddy (무경운답(無耕耘畓)에서 둑새풀의 발생양상(發生樣相)과 방제방법(防除方法))

  • Hong, Kwang-Pyo;Kim, Jang-Yong;Kang, Dong-Ju;Shin, Won-Gyo
    • Korean Journal of Weed Science
    • /
    • v.16 no.3
    • /
    • pp.176-180
    • /
    • 1996
  • In order to estabilish a labour-saved and environmental protected paddy rice system in Southern Korea, new system, called no-tillage paddy system, was proposed and investigated from 1988 to 1996. Under the no-tillage paddy system, occurrence pattern, control value and regrowth of water foxtail each treatment(herbicides and application dates), and occurrence of volunteer rice plant in application dates of herbicide were investigated. The growth of water-foxtil was markedly increased from middle of May and no. of tillers and dry weight of water-foxtail increased up to 3rd crop year in no-tillage. Glyphosate application for control of water-foxtail was 20 days before transplanting. And when the soil under the no-tillage paddy system in May 1 and May 10 application of herbicide machine-transplanted with 8-day-old seedlings missing hills were increased compared to April 20 and early growth stages of machine transplanted of rice in April 20 applications of herbicide showed increased plant height, no. of tillers of rice, occurrence of volunteer rice plants from the shattered seeds were 1,600plants/10a and decreased in May 10 compared to April 20 and May 1.

  • PDF

Soil Mineral Nitrogen Upteke and Com Growth from Hairy Vetch with Conventional and No-Tillage Systems

  • Seo, Jong-Ho;Lee, Ho-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.5
    • /
    • pp.381-387
    • /
    • 2003
  • Winter hairy vetch (HV) can be used as green manure with conventional tillage system (CT), in which chemical N fertilizer required for cultivation of sub-sequent com could be fully saved, or as cover crop with no-tillage system (NT) in which soil could be protected from erosion, control of weed, and the reduction of N fertilizer application. This experiment was carried out to compare the enrichment of soil mineral nitrogen (SMN) at corn root zone, and the changes of com growth and N uptake according to HV amounts (winter fallow, above-ground HV removed, intact HV, and HV added from aboveground HV removed) under two tillage systems in the upland field of National Crop Experiment Station, Suwon, Korea in 1996. HV cultivation during winter decreased SMN a little at com planting. HV incorporation with CT increased SMN rapidly during early growth stage according to rapid decomposition of Hv. SMN by HV cover with NT was increased slowly and its increase was higher in the surface soil (soil layer 0-7.5cm) compared to deep soil layer 7.5-22cm. Com growth and N status at corn silking stage, com yield and N uptake at harvest were increased in proportion to aboveground HV amounts regardless of tillage system. Average hairy vetch nitrogen (HV-N) uptake efficiency by com was 10% higher with CT than with NT in which average HV-N uptake efficiency was 43 %. Corn yields were not different between two tillage systems, but corn N uptake was increased by 33 kgN/ha more with CT than with NT due to the increase of corn N concentration. The increase of SMN and com N uptake from HV cover with NT could not be disregarded though those with CT were higher than with NT

Effects of Soil Types and Tillage Systems on Soil Water Movement in the Root Zone of Cornfields (옥수수포장의 토양 수분함량에 대한 토성과 경운의 영향)

  • Kim, Won-Il;Jeong, Goo-Bok;Koh, Mun-Hwan;Huck, M.G.;Park, Ro-Dong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.4
    • /
    • pp.197-206
    • /
    • 2002
  • Volumetric soil water contents through a soil profile were monitored to identify the effects of tillage systems and soil physico-chemical characteristic on soil water movement from the soil profile. Water content profiles under no tillage (NT) and conventional tillage (CT) practices were compared at two commercial farms in central Illinois from 1992 through 1994, using neutron-scattering techniques in weekly intervals during each growing season. The volumetric water content of surface soil layers was affected more by tillage systems and rainfall amounts, whereas that of the subsoil layers was more strongly affected by soil types. Soil water percolated faster through Saybrook and Catlin soils than through Drummer, Flanagan, and Ipava soils because Saybrook and Catlin soils have lower clay content and water-retention capacity and higher permeability than Drummer, Flanagan, and Ipava soils. Increased soil organic matter (SOM) in Drummer, Flanagan, and Ipava soils would be attributable to the higher soil water retention than other soil types. Soil water contents in the corn root zone were consistently higher under CT plots than under NT plots.

Evaluation of N2O Emissions with Different Growing Periods (Spring and Autumn Seasons), Tillage and No Tillage Conditions in a Chinese Cabbage Field (배추의 재배시기와 경운 유.무에 따른 아산화질소 배출 평가)

  • Kim, Gun-Yeob;Jeong, Hyun-Cheol;Shim, Kyo-Moon;Lee, Seul-Bi;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1239-1244
    • /
    • 2011
  • Importance of climate change and its impact on agriculture and environment has increased with a rise of greenhouse gases (GHGs) concentration in Earth's atmosphere. Nitrous oxide ($N_2O$) emission in upland fields were assessed in terms of emissions and their control at the experimental plots of National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA) located in Suwon city. It was evaluated $N_2O$ emissions with different growing periods (spring and autumn seasons), tillage and no tillage conditions in a chinese cabbage field. The results were as follows: 1) An amount of $N_2O$ emissions were high in the order of Swine manure compost>NPK>Hairy vetch+N fertilizer. By tillage and no tillage conditions, $N_2O$ emissions were reduced to 33.7~51.8% (spring season) and 31.4~76.7% (autumn season) in no-tillage than tillage conditions. 2) In autumn season than those spring season, $N_2O$ emissions at NPK, hairy vetch+N fertilizer and swine manure compost were reduced to 49.6%, 39.0% and 60.0%, respectively, in tillage treatment and 59.5%, 70.6% and 58.7%, respectively, in no-tillage treatment. 3) $N_2O$ emission measured in this study was 15.2~86.4% lower with tillage and no tillage treatments than that of the IPCC default value (0.0125 kg $N_2O$-N/kg N).

Impacts of Flooding Depths on Weed Occurrence and Yield in No-tillage Paddy Field Covered with Chinese Milk Vetch (무경운 자운영 피복 논에서 담수 깊이가 잡초발생과 수량에 미치는 영향)

  • Hong, Kwang-Pyo;Lee, Young-Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.176-180
    • /
    • 2011
  • Rice production depended on the weed control. The purpose of this study was conducted to evaluate the influence of tillage with chemical amendments + 5 cm flooded, no-tillage without Chinese milk vetch + 5 cm flooded (NTNT 5 cm), no-tillage amended with Chinese milk vetch + 5 cm flooded (NTCM 5 cm), and no-tillage amended with Chinese milk vetch + 10 cm flooded (NTCM 10 cm) on weed occurrence and yield of rice in paddy. Triplicate experimental plots were laid out in a randomized complete block design and compared by employing least significant difference. The dry weights of weeds in NTCM 5 cm and NTCM 10 cm were 11% and 4% level of NTNT 5 cm (p<0.05) and were 3.2 times and 1.2 times more than in conventional tillage system. In addition, the Aneilema keisak and Ludwigia prostrata were significantly increased in NTNT 5 cm (p<0.05). The yield of rice grain in NTCM 10 cm was 2.6 times more than in NTNT 5 cm and was 89% level of conventional tillage system. Our findings suggest that NTCM 10 cm should be enhance of weed control as well as improving of yield of rice in paddy.