• Title/Summary/Keyword: tide level

Search Result 386, Processing Time 0.027 seconds

A Study on Development of the Tidal Database for the Philippines (필리핀을 위한 조석 데이터베이스 개발에 관한 연구)

  • PARK, Eung-Hyun;AHN, Se-Jin;SHIM, Moon-Bo;JEON, Hae-Yeon;KANG, Ho-Yun;KIM, Dae-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.4
    • /
    • pp.158-168
    • /
    • 2019
  • Korea Hydrographic and Oceanographic Agency(KHOA) carried out a research project named 'Marine Fisheries Infrastructure Construction and Technology Training for the Philippines' as part of the 1st Official Development Assistance(ODA) from 2015 to 2018. It is preparing for the 2nd ODA project which will begin in 2020. Besides, recently, the Philippines is paying attention to marine territory management and response capability due to problems such as the sea-level rise and coastal erosion caused by climate change. Therefore, before 2nd ODA to the Philippines, this study analyzed the vertical ocean model on the vertical datum in Korea and suggests the direction of development of the vertical ocean modeling system for the vertical datum in the Philippines using the observed data from the permanent tide station which was built by the Philippines ODA research project over the last four years. Moreover, as a pilot study, the Sulu Sea in the Philippines was selected and analyzed by harmonic analysis method. At each tide station, constants for correction had been computed. And the grid-based tidal model was constructed based on this study. As a result of the study, similar tidal characteristic were observed when the prediction and the measured tide were compared by applying the constants for correction between two station in the sea area with similar tidal level. These results could be used as basic data for the 2nd ODA to the Philippines, and contributed to construct and maintain a close cooperation and friendship between Korea and the Philippines.

Study on the Fluctuations of Groundwater Levels in Cheju Island, Korea (제주도 지하수의 수위변동에 관한 연구)

  • Park, Won-Bae;Yang, Seong-Gi;Go, Gi-Won
    • Journal of Environmental Science International
    • /
    • v.3 no.4
    • /
    • pp.333-348
    • /
    • 1994
  • The groundwater levels at 11 sites and the vertical variations o( the water Quality at 1 site were measured to study the characteristic of the groundwater level fluctuation of Cheju Island. The results of the measurements for the groundwater levels were as follows; In the eastern part, inculding Kimnyong, Jongdal and Sungsan, a sinusoidal fluctuation of groundwater levels occurred in response to oceanic tides. The tidal effect on the groundwater level was reduced depending upon the distance from seashore. But time lag showed that the trend is reversed. However, in the Samyang, Kosan and Shinhyo areas show that the groundwater level was directly influenced by the amount of precipitation. Especially, Shinhyo area which southern part in Cheju was affected the most and show upper parabasal groundwater level. In Susan- I which eastern part in Cheju, well rovealed that water Quality changed with the period of a tide. Salinity at the lim, bellow the natural groundwater level, was approched to the brackish groundwater(1000ppm).

  • PDF

A Study on Red Tide Control with Loess Suspension (부유황토에 의한 적종방제 연구)

  • Na Gui-Hwan;Choi Woo-Jeong;Chun Young-Yull
    • Journal of Aquaculture
    • /
    • v.9 no.3
    • /
    • pp.239-245
    • /
    • 1996
  • As one of the red tide control method, montmorillonite was used to eliminate the causative organisms in Korea and Japan. We assayed the loess to replace the montmorillonite because it distribute in large quantity and nearby the red tide occurrence in South Coast of Korea. By using the mixture of loess and coal ashes, we examined the decreasing level of nutrients such as ammonia and phosphate, the elimination of causative organisms as a chlorophyll a content, and the harmful effect on aquaculture orgarnisms in cage culture farms. Half of the ammonium and phosphate was adsorbed by the loess particles, but only $25\%$ of ammonium was adsorbed by the coal ashes particles. In water column test, the particles of loess and coal ashes were settled down by $80\%$ in 20 minutes, the red tide organisms was eliminated by $80\%$ after 2 hours in 1,000 ppm of loess suspension, but the organisms were eliminated only $30\%$ by the same concentration of coal ashes. The harmful test of fishes and invertbrates, we observed any other negative effects of test animals than a tint deceleration in yellowtail.

  • PDF

Intraspecific Zonation of the Benthic Amphipod Pontogeneia rostrata in Relation to Diel and Tidal Cycles (저서성 단각류 Pontogeneia rostrata의 종내 대상분포와 주야-조석주기)

  • YU Ok Hwan;SUH Hae-Lip;SOH Ho Youn
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.4
    • /
    • pp.500-507
    • /
    • 1998
  • Using a sledge net, the benthic amphipods were taken over one cycle of the neap and spring tides in January 1993 at the sandy shore surf zone of Dolsando, southern Korea. From these samples, we investigated the diel and tidal effects on the intraspecific zonation of Pontogeneia rostrata. The density of p. rostrata was higher during neap tide than spring. Of three categories (adult males and females and juveniles), juveniles and males attained to its highest density during neap and spring tides, respectively. Length- frequency data show that the high mortality of juveniles seemed to occur in winter. In the surface at night, it is significant that juveniles were significantly more abundant during neap tide than spring, whereas both adult males and females were more abundant during spring tide than neap. This suggests that the vortical migration patterns of juveniles and adults vary with the type of tides. During flood of spring tide, more than $90\%$ of population collected at the area above the mean sea level (MSL) were adults. With a decrease of female/male ratio, size of males increased there but that of female did not change, indicating an active migration of large males. This behavior can provide an extension of distribution area far large males, and also give a competitive advantage to large male against small one for mate and feeding. Although adult p. rostrata was collected at 100 cm above MSL at night during spring tide, a major portion of population as usually present on the shore below MSL. The center of zonation was restricted from 50 cm to 250 cm below MSL.

  • PDF

SEASONAL AND SUBINERTIAL VARIATIONS IN THE SOYA WARM CURRENT REVEALED BY HF OCEAN RADARS, COASTAL TIDE GAUGES, AND A BOTTOM-MOUNTED ADCP

  • Ebuchi, Naoto;Fukamachi, Yasushi;Ohshima, Kay I.;Wakatsuchi, Masaaki
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.340-343
    • /
    • 2008
  • The Soya Warm Current (SWC) is a coastal boundary current, which flows along the coast of Hokkaido in the Sea of Okhotsk. Seasonal and subinertial variations in the SWC are investigated using data obtained by high-frequency (HF) ocean radars, coastal tide gauges, and a bottom-mounted acoustic Doppler current profiler (ADCP). The HF radars clearly capture the seasonal variations in the surface current fields of the SWC. The velocity of the SWC reaches its maximum, approximately 1 m/s, in the summer, and becomes weaker in the winter. The velocity core is located 20 to 30 km from the coast, and its width is approximately 50 km. The almost same seasonal cycle was repeated in the period from August 2003 to March 2007. In addition to the annual variation, the SWC exhibits subinertial variations with a period from 10-15 days. The surface transport by the SWC shows a significant correlation with the sea level difference between the Sea of Japan and Sea of Okhotsk for both of the seasonal and subinertial variations, indicating that the SWC is driven by the sea level difference between the two seas. Generation mechanism of the subinertial variation is discussed using wind data from the European Centre for Medium-range Weather Forecasts (ECMWF) analyses. The subinertial variations in the SWC are significantly correlated with the meridional wind component over the region. The subinertial variations in the sea level difference and surface current delay from the meridional wind variations for one or two days. Continental shelf waves triggered by the meridional wind on the east coast of Sakhalin and west coast of Hokkaido are considered to be a possible generation mechanism for the subinertial variations in the SWC.

  • PDF

The Flow Variation due to Pier Construction at Kwangyang Bay (컨테이너 부두건설에 따른 광양만의 유황변동)

  • Choi, Song Yeol;Cho, Won Cheol;Lee, Won Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.115-125
    • /
    • 1992
  • The variation of flow pattern caused by the topographical change of Kwangyang bay, is analyzed using the numerical tidal model for the depth-integrated two- dimensional long wave equation. The results of study are as follows. Due to pier construction, the area of water surface is deceased and the water inflow into the Kwangyang bay is reduced. For this result, at the outer bay of Myo island, the tidal range is slightly increased. And at the inner bay, water level is dropped generally, and especially at the time of low water tide, the phenomena of water level drop obviously appears. According to the variation pattern, flow velocities is lower than those of non-construction condition over the Kwangyang bay. But at the channel(from Kwangyang east stream) flowing into the east Kwangyang bay, for the contraction of channel profile, flow velocity is increased. The study based on the 100 year frequency design flood discharge from Sueocheon(river) and Dongcheon(river) which are flowing into the bay and Seomjin River flowing along the boundary of the bay is also performed. During the spring tide condition, the results showed the rise of water level about 1.2 m at Seomjin River Estuary and 0.3 m at inner bay is occurred.

  • PDF

FACTORS OF GROUNDWATER FLUCTUATION IN SHIN KORI NUCLEAR POWER PLANTS IN KOREA

  • Hyun, Seung Gyu;Woo, Nam C.;Kim, Kue-Young;Lee, Hyun-A
    • Nuclear Engineering and Technology
    • /
    • v.45 no.4
    • /
    • pp.539-552
    • /
    • 2013
  • To establish an aging management plan considering seawater influx and changes in groundwater within nuclear power plant sites, the characteristics of groundwater flow must be understood. This study investigated the characteristics of groundwater flow within the site and analyzed groundwater level recorded by monitoring wells to evaluate groundwater flow characteristics and elements that affected these characteristics for supplying the information to conduct the appropriate aging management for ensuring the safety of the safety-related structures in Shin Kori Unit 1 and 2. The increase in groundwater level during the wet season results from high sea-level conditions and the large amount of precipitation. As a result of the analysis of groundwater distribution and change characteristics, the site could be divided into a rainfall-affected area and a tide-affected area. First, the rainfall-affected area can further be divided into areas that are affected simultaneously by excavation, backfill, and a permanent dewatering system. Secondly, areas that are not affected by excavation, or the dewatering system, or by structure arrangement and excavation. Analysis of the spectrum for wells affected by tides resulted in confirmation of the M2 component (12.421 hr) and S2 component (12.000 hr) of the semidiurnal tides, and the O1 component (25.819 hr) of the diurnal tides. In the cross-correlation results regarding tides and groundwater levels, the lag time occurred diversely within 1-3 hours by the effect of the well location from sea, the distribution of the backfill material with depth, and the concrete structure.

Generation Forecast for Integrating Sihwa Tidal Power into Power Systems (시화 조력발전 접속에 따른 발전량 예측)

  • Kim, Kyu-Ho;Song, Kyung-Bin;Kwon, Seok-Kee;Kim, Tae-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.375-377
    • /
    • 2006
  • This paper presents a method to calculate generation power for integrating Sihwa tidal power into power systems. The sea levels of 1 minute interval using cubic interpolation based on the forecasted levels of high and low water offered from Nori(National Oceanographic Research Institute) are calculated. If the sea level is greater than the lake level and the difference between sea level and lake level at high tide is over the default value, it begins to calculate the tidal power. It is seen that tidal power can supply power to demand side stably and economically from assessment of effect for integrating tidal power into power systems.

  • PDF

Stability Analysis for a Dyke Subjected to Tidal Fluctuations (조위변동(潮位變動)을 받는 호안제(護岸堤)의 사면안정해석(斜面安定解析))

  • Kim, Sang Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.3
    • /
    • pp.91-100
    • /
    • 1988
  • Assuming that tidal level is constantly changed with an amplitude of 10 meters and a cycle of 12 hours, the slope stability for a typical dyke is analysed. The variation of pore water pressure within the dyke during the tidal change is obtained using a computer program, FLUMP, which is incorporated with saturated-unsaturated and transient flow. The results show that the variation of free water surface and distribution of pore water pressure within the dyke during the tidal fluctuations can be clearly predicted with the computer program. When a tide is lowered to the minimum level, the predicted pressure head is higher than the level of the free water surface in some parts of the dyke; that is, excess pore water pressure is generated in a zone affected by the tidal change. Also an unsaturated zone which shows negative pore water pressure is temporally created when a tide is lowered. The shear strength of the zone can be predicted based on the proposal suggested by Fredlund et al. It is emphasized that the excess pore water pressure generated during tidal fluctuations and strength parameters for the unsaturated zone should be considered in analyzing the slope stability of dykes. When those are considered, the critical slip surface seems to be located below the free water surface obtained when a tide is at the lowest.

  • PDF

Nitrate Flux at the Sediment-Water Interface in the West-Nakdong River Estuary (서낙동강 하구에서 퇴적물과 강물 경계면을 통한 질산염의 플럭스)

  • Lee, Tae-Hee;Lee, Tong-Sup
    • Ocean and Polar Research
    • /
    • v.26 no.4
    • /
    • pp.635-646
    • /
    • 2004
  • Chronic outbreaks of green tide in the Nakdong estuary toll a heavy socioeconomic cost. The paper investigates the influence of sediments on the nitrogen eutrophication, being claimed as the primary cause of green tide. To measure the flux of nitrate at the sediments-water interface, sediment cores were taken in Jan., Mar., May and Sep., 2000 at Noksan located in the West-Nakdong river estuary. The dissolved oxygen was profiled and then the pore water was extracted in situ. Core samples were analyzed for their textural characteristics. Cores were incubated by a novel technique to measure the fluxes of nitrate $(NO_3^-)$ and ammonia $(NH_4^+)$ at the sediment-water interface. The dissolved oxygen was depleted usually within several millimeters in the top sediments. Nitrate started to decrease drastically at the layer where dissolved oxygen was nearly depleted. Nitrate was also exhausted within several centimeters, followed by ammonia build up rapidly. The flux at the sediments-water interface calculated from the pore water concentrations revealed that nitrate was removed from the water column into the sediments. The sediment incubation experiment confirmed the above result. On the other hand ammonia were released from the sediment to the water column. As the incubation went on, however, the nitrate concentration in the overlying water was dropped below that of a top sediment. Then the flux is reversed, i.e., nitrate was released from the sediments to the water column. The implication is that the sediment can supply nitrate to the water column if it falls below a certain level. Thus it is likely that sediments in the eutrophicated river buffers the nitrate concentration in the water column, which leads to a prolonged green tide.