• Title/Summary/Keyword: tide

Search Result 1,634, Processing Time 0.027 seconds

Inter-annual Variation of Tides on the Western Coasts of Korea (서해 연안에서 조석특성의 경년변화)

  • Jung, Tae Sung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.2
    • /
    • pp.81-91
    • /
    • 2016
  • Harmonic analysis of tide data observed on the western coasts has been conducted. The changing trends of harmonic constants were reviewed. Overall, amplitudes of semidiurnal tide are not changed and present phases are faster than in the past. In Mokpo located in a semi-enclosed bay, the amplitudes have been greatly increased and the phases have become earlier due to construction of sea-dike and seawalls. Harmonic constants of diurnal tide have not been changed except Mokpo. In Mokpo the phases of diurnal tide have been earlier. Tidal ranges in spring tide and neap tide have not been significantly changed except Mokpo. In Mokpo tidal ranges have been increased and tidal flats widened. Approximate higher high water has been overall rising. Therefore, Korean western coasts can be easily inundated than before.

Impacts of Land Cover Change of Tidal Flats on Local Meteorology in Gyeonggi Bay, West Sea of Korea (경기만 갯벌의 지표면 토지피복 변화가 국지기상에 미치는 영향 평가)

  • An, Hye Yeon;Kim, Yoo-Keun;Jeong, Ju-Hee
    • Atmosphere
    • /
    • v.27 no.4
    • /
    • pp.399-409
    • /
    • 2017
  • The impact of land cover changed by tidal flats on local meteorology in Gyeonggi Bay was quantitatively evaluated based on a numerical modeling approach during 18 days (21 June to 9 July 2013). The analysis was carried out using three sets of simulation scenarios and the land cover of tidal flats for each simulation was applied as follows: (1) the herbaceous wetland representing coastal wetlands (i.e., EXP-BASE case), (2) the barren or sparsely vegetated representing low tide (i.e., EXP-LOW case), (3) the water bodies representing high tide (i.e., EXP-HIGH case). The area of tidal flats was calculated as about $552km^2$ (the ratio of 4.7% for analysis domain). During the daytime, the change (e.g. wetlands to water) of land cover flooded by high tide indicated the decrease of temperature (average $3.3^{\circ}C$) and the increase of humidity (average 13%) and wind speed (maximum $2.9m\;s^{-1}$). The changes (e.g. wetlands to barren or sparsely vegetated) of land cover induced by low tide were smaller than those by high tide. On the other hands, the effects of changed land cover at night were not apparent both high tide and low tide. Also, during the high tide, the meteorological change in tidal flats affected the metropolitan area (about 40 km from the tidal flat).

Application of unmanned aerial image application red tide monitoring on the aquaculture fields in the coastal waters of the South Sea, Korea (연근해 양식장 주변 적조 모니터링을 위한 무인항공영상 적용 연구)

  • Oh, Seung-Yeol;Kim, Dae-Hyun;Yoon, Hong-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.2
    • /
    • pp.87-96
    • /
    • 2016
  • Red tide, causes aquaculture industry the damages in Korea every summer, was usually detected by using satellite, aquaculture information was difficult to detect by using satellite. Therefore, we suggests the method for detecting the red tide using the coastal observation and the product from the unmanned aerial Vehicle. As a result, we obtained the high resolution unmanned aerial Vehicle images, detected the red tide by using the unsupervised classification from the true color images and the simple algorithm from the RGB color images. Compared the previous color images, unmanned aerial Vehicle images were clearly classified the ocean color, we were able to identify the red tide distribution in sea surface. These methods were determined to accurately monitor the red tide distribution on the aquaculture fields in the coastal waters where is established the aquaculture.

Influence of Sea Condition on Catch Fluctuation of Long Line for Common Octopus, Octopus Variddilis, in the Coastal Waters of Yosu (2) (여수연안 낙지주낙 어장의 해황과 어획 변동에 관한 연구 (2))

  • 정정민;김동수
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.3
    • /
    • pp.159-162
    • /
    • 2001
  • In order to investigate the influence of sea condition on the catch fluctuation of long line for common octopus, octopus variabilis, the oceanographic factors. I. e., the wind direction, the wind speed, the age of moon and ebb tide and flood tide in the coastal waters of Yosu from Jan. 11 to Jul. 25 in 1997, and compared with the catches of common octopus, octopus variabilis by long line. The results obtained summerized as follows: 1) The catch of common octopus was highest in wind direction from SE and lowest in that from NW. The catch was highest at the wind speed of 2m/sec and decreased with increasing speed, over 2m/sec. 2) The catch of common octopus was highest at the day of neap tide and lowest at the mid day, from neap tide to spring tide. More strictly the catch was higher during days at which the current became rapid than during days at which the current became slow. The catch was higher always at flood tide than at ebb tide in all the days investigated and highest with in one hour from ebb tide.

  • PDF

Comparison of Topex/poseidon Sea Surface Heights with Tide Gauge Sea Levels in the South Indian Ocean (남인도양에서의 Topex/Poseidon sea surface heights와 tide gauge sea levels간의 비교)

  • YOON Hong-Joo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.3
    • /
    • pp.368-373
    • /
    • 1999
  • Topex/Poseidon sea surface heights are compared to tide gauge sea levels in the South Indian Ocean in the period of January 1993 to December 1995. A user's handbook (AVISO) for processing sea surface height data was used in this study. Topex/Poseidon sea surface heights were obtained from satellite data at the proximity of tide gauge stations. These data were reproduced by a linear interpolation with the interval of 10 days and were processed by the Gaussian filter with a 60-day window. The tide gauge sea levels were obtained in the same manner as the satellite data. The main results on RMS (Root-Mean-Square) and CORR (CORRelation coefficient) in our study were shown as follows: 1) on the characteristics between two data (in-situ and model data), the results (RMS=2.96 cm & CORR=$92\%$ in the Amsterdam plateau, and RMS=3.45 cm & CORR=$59\%$ in the Crozet plateau) of the comparison of Topex/Poseidon sea surface heights with tide gauge sea levels, which was calculated by in-situ data of obsewed station showed generally low values in RMS and high values in CORR against to the results (RMS=4.69 cm & CORR=$79\%$ in the Amsterdam plateau, and RMS= 6.29 cm & CORR= $49\%$ in the Crozet plateau) of the comparison of Topex/Poseidon sea surface heights with tide gauge sea levels, which was calculated by model data of ECMWF (European Center for Medium-range Weather Forecasting), and 2) on the characteristics between two areas (Kerguelen plateau and island), the results (RMS=3.28 cm & CORR= $54\%$ in the Kerguelen plateau) of open sea area showed low values in RMS and high values in CORR against to the results (RMS= 5.71 cm & CORR=$38\%$ in the Kerguelen island) of coast area, respectively.

  • PDF

Tidal Influence on Physical Parameters and Phytoplankton Size Structure in Youngsan River Estuary during Neap Tide (조석에 따른 영산강 하구의 물리적 환경 및 식물플랑크톤 크기구조: 소조기)

  • Park, Geon-Woo;Lee, Da-Hye;Shin, Yongsik
    • Journal of Environmental Science International
    • /
    • v.26 no.3
    • /
    • pp.325-334
    • /
    • 2017
  • To understand the changes in physical parameters and phytoplankton size structure caused by tides, a fixed station in the Youngsan River estuary was monitored at 2-h intervals, on April 28, 2012 and August 12, 2012. No clear relationship was observed between the temperature and salinity changes and tidal levels in April. However, in August, temperature decreased during the ebb tide and increased during the flood tide, while salinity showed the opposite trend. In addition, there was no specific change in the phytoplankton biomass corresponding to tidal levels in April. In August, the total chlorophyll a and the biomass of net phytoplankton (>$20{\mu}m$) increased almost 20 times during the ebb tide and decreased during the flood tide. The biomass of nanophytoplankton (<$20{\mu}m$) showed a similar variation in response to tidal level changes. In April, the relationship between percent contributions of phytoplankton size structure and tidal levels was not clear. In August, the net phytoplankton was dominant in the early stage and nanophytoplankton was dominant in the later stage, while contribution of nanophytoplankton and net phytoplankton increased at high tide and low tide, respectively. Therefore, in April, other factors such as freshwater discharge were more important than the tide, whereas in August, when no freshwater discharge was recorded, the changes in semidiurnal tides influenced the physical parameters and phytoplankton dynamics. These results could contribute to the understanding of phytoplankton dynamics in the Youngsan River estuary.

Saline Water Movement In The Estuary Of The Nakdong River (낙동강 하구의 염수운동)

  • Chang, Sun-duck;Ryu, Cheong-ro;Lee, Mun-ok;Lee, Jae Chul
    • 한국해양학회지
    • /
    • v.16 no.1
    • /
    • pp.31-37
    • /
    • 1981
  • Saline water movements in relation to tidal condition and river discharge in the estuary of the Nakdong River are discussed on the basis of the observation data. The difference of salinity between the surface and the bottom layer was 1∼3 at spring tide forming a vertically homogeneous estuary, while at neap tide, it ranges up to 7∼15 indicating a sharp salt wedge. The maximum salinity appeared approximately at an hour after the high water, that is, three hours after the landward velocity maximum, while the salinity maximum at around an hour after the low water, that is, three hours after the seaward velocity maximum. The density current speed at a section located 10km landward from the river mouth was observed approximately to be 45cm sec$\^$-1/ at 8m layer.The relations between the salinity at Gupo and the river discharge at Jindong are estimated by means of the least square method. The maximum length of the salt wedge is calculated approximately to be 22km at neap tide and 16km at spring tide, which is in accordance with the observed data. The salinity influence area is deduced to be 45km at spring tide and 35km at neap tide. The diffusion coefficient of salinity was estimated approximately to be 1.5 10$\^$8/$\textrm{cm}^2$ sec$\^$-1/ at Samrak and 8 10$\^$5/$\textrm{cm}^2$ sec$\^$-1/ at Gupo at neap tide, while it was 1.4 10$\^$7/$\textrm{cm}^2$ sec$\^$-1/ at Dongwon at spring tide.

  • PDF

Influence of Sea Condition on Catch Fluctuation of Long Line for Common Octopus, Octopus Variddilis, in the Coastal Waters of Yosu (2) (여수연안 낙지주낙 어장의 해황과 어획 변동에 관한 연구(2))

  • 정정민;김동수
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.4
    • /
    • pp.326-330
    • /
    • 2001
  • In order to investigate the influence of sea condition on the catch fluctuation of long line for common octopus, octopus variabilis, the oceanographic factors, i. e., the wind direction, the wind speed, the age of moon and ebb tide and flood tide in the coastal waters of Yosu from Jan. 11 to Jul. 25 in 1997, and compared with the catches of common octopus, octopus variabilis, by long line. The results obtained summerized as follows; 1) The catch of common octopus was highest in wind direction from SE and lowest in that from NW. The catch was highest at the wind speed of 2m/sec and decreased with increasing speed, over 2m/sec. 2) The catch of common octopus was highest at the day of neap tide and lowest at the mid day, from neap tide to spring tide. More strictly the catch was higher during days at which the current became rapid than during days at which the current became slow. The catch was higher always at flood tide than at ebb tide in all the days investigated and highest with in one hour from ebb tide.

  • PDF

A Design and Implementation Red Tide Prediction Monitoring System using Case Based Reasoning (사례 기반 추론을 이용한 적조 예측 모니터링 시스템 구현 및 설계)

  • Song, Byoung-Ho;Jung, Min-A;Lee, Sung-Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12B
    • /
    • pp.1219-1226
    • /
    • 2010
  • It is necessary to implementation of system contain intelligent decision making algorithm because discriminant and prediction system for Red Tide is insufficient development and the study of red tide are focused for the investigation of chemical and biological causing. In this paper, we designed inference system using case based reasoning method and implemented knowledge base that case for Red Tide. We used K-Nearest Neighbor algorithm for recommend best similar case and input 375 EA by case for Red Tide case base. As a result, conducted 10-fold cross verification for minimal impact from learning data and acquired confidence, we obtained about 84.2% average accuracy for Red Tide case and the best performance results in case by number of similarity classification k is 5. And, we implemented Red Tide monitoring system using inference result.

A Study on the Distribution of Summer Water Temperature in Wando Using Time-Series Analysis and Numerical Experiments (시계열 분석 및 수치실험을 통한 완도의 하계 수온분포)

  • Jang, Chan-Il;Jeong, Da-Woon;Kim, Dong-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.188-195
    • /
    • 2018
  • Time series analysis was conducted to identify the factors affecting short-term variation of water temperature in Wando. Spectrum analysis showed that air temperature peaks at diurnal period, while water temperature and tide level peak at both semi-diurnal and diurnal periods. Coherence between water temperature and the tide level presented 0.92 at semi-diurnal period. Numerical experiment were carried out to understand the spatio-temporal distribution of water temperature in the study area. Average water temperature difference between maximum ebb and flood was $0.3^{\circ}C$ in spring tide, but $0.13^{\circ}C$ in neap tide. The reason for the large difference in spring tide is that relatively cold water entered with strong tidal currents at flood tide and flowed out at ebb tide. Water temperature on coasts was higher than out at sea. This is because the depth in the coast is shallower than at sea, and water temperature increases rapidly due to solar radiation.