• Title/Summary/Keyword: tidal mud flat

Search Result 95, Processing Time 0.023 seconds

Cloning and Expression of a Alkaline Protease from Bacillus clausii I-52 (Bacillus clausii I-52로부터 alkaline protease 유전자의 클로닝 및 발현)

  • Joo, Han-Seung;Choi, Jang Won
    • Journal of agriculture & life science
    • /
    • v.45 no.6
    • /
    • pp.201-212
    • /
    • 2011
  • The alkaline protease gene was cloned from a halo-tolerant alkalophilic Bacillus clausii I-52 isolated from the heavily polluted tidal mud flat of West Sea in Inchon Korea, which produced a strong extracellular alkaline protease (BCAP). Based on the full genome sequence of Bacillus subtilis, PCR primers were designed to allow for the amplification and cloning of the intact pro-BCAP gene including promoter region. The full-length gene consists of 1,143 bp and encodes 381 amino acids, which includes 29 residues of a putative signal peptide and an additional 77-amino-acid propeptide at its N-terminus. The mature BCAP deduced from the nucleotide sequence consists of 275 amino acids with a N-terminal amino acid of Ala, and a relative molecular weight and pI value was 27698.7 Da and 6.3, respectively. The amino acid sequence shares the highest similarity (99%) to the nattokinase precursor from B. subtilis and subtilisin E precursor from B. subtilis BSn5. The substrate specificity indicated that the recombinant BCAP could hydrolyze efficiently the synthetic substrate, N-Suc-Ala-Ala-Pro-Phe-pNA,and did not hydrolyze the substrates with basic amino acids at the P1 site. The recombinant BCAP was strongly inhibited by typical serine protease inhibitor, PMSF, indicating that BCAP is a member of the serine proteases.

An Analysis of the Experience of Visitors of Fishing Experience Recreation Village Using Big Data - A Focus on Baekmi Village in Hwaseong-si and Susan Village in Yangyang-gun - (빅데이터를 활용한 어촌체험휴양마을 방문객의 경험분석 - 화성시 백미리와 양양군 수산리 어촌체험휴양마을을 대상으로 -)

  • Song, So-Hyun;An, Byung-Chul
    • Journal of Korean Society of Rural Planning
    • /
    • v.27 no.4
    • /
    • pp.13-24
    • /
    • 2021
  • This study used big data to analyze visitors' experiences in Fishing Experience Recreation Village. Through the portal site posting data for the past six years, the experience of visiting Fishing Experience Villages in Baekmi and Susan was analyzed. The analysis method used Text mining and Social Network Analysis which are Big data analysis techniques. Data was collected using Textom, and experience keywords were extracted by analyzing the frequency and importance of experience texts. Afterwards, the characteristics of the experience of visiting the Fishing Experience Village were identified through the analysis of the interaction between the experience keywords using 'U cinet 6.0' and 'NetDraw'. First, through TF and TF-IDF values, keywords such as "Gungpyeong Port", "Susan Port", and "Yacht Marina" that refer to the name of the port and the port facilities appeared at the top. This is interpreted as the name of the port has the greatest impact on the recognition of the Fishing Experience Villages, and visitors showed a lot of interest in the port facilities. Second, focusing on the unique elements of port facilities and fishing villages such as "mud flat experience", "fishing village experience", "Gungpyeong port", "Susan port", "yacht marina", and "beach" through the values of degree, closeness, and betweenness centrality interpreted as having an interaction with various experiences. Third, through the CONCOR analysis, it was confirmed that the visitor's experience was focused on the dynamic behavior, the experience program had the greatest influence on the experience of the visitor, and that the experience of the static and the dynamic behavior was relatively balanced. In conclusion, the experience of visitors in the Fishing Experience Villages is most affected by the environment of the fishing village such as the tidal flats and the coast and the fishing village experience program conducted at the fishing port facilities. In particular, it was found that fishing port facilities such as ports and marinas had a high influence on the awareness of the Fishing Experience Villages. Therefore, it is important to actively utilize the scenery and environment unique to fishing villages in order to revitalize the Fishing Experience Villages experience and improve the quality of the visitor experience. This study is significant in that it studied visitors' experiences in fishing village recreation villages using big data and derived the connection between fishing village and fishing village infrastructure in fishing village experience tourism.

Geology of Athabasca Oil Sands in Canada (캐나다 아사바스카 오일샌드 지질특성)

  • Kwon, Yi-Kwon
    • The Korean Journal of Petroleum Geology
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • As conventional oil and gas reservoirs become depleted, interests for oil sands has rapidly increased in the last decade. Oil sands are mixture of bitumen, water, and host sediments of sand and clay. Most oil sand is unconsolidated sand that is held together by bitumen. Bitumen has hydrocarbon in situ viscosity of >10,000 centipoises (cP) at reservoir condition and has API gravity between $8-14^{\circ}$. The largest oil sand deposits are in Alberta and Saskatchewan, Canada. The reverves are approximated at 1.7 trillion barrels of initial oil-in-place and 173 billion barrels of remaining established reserves. Alberta has a number of oil sands deposits which are grouped into three oil sand development areas - the Athabasca, Cold Lake, and Peace River, with the largest current bitumen production from Athabasca. Principal oil sands deposits consist of the McMurray Fm and Wabiskaw Mbr in Athabasca area, the Gething and Bluesky formations in Peace River area, and relatively thin multi-reservoir deposits of McMurray, Clearwater, and Grand Rapid formations in Cold Lake area. The reservoir sediments were deposited in the foreland basin (Western Canada Sedimentary Basin) formed by collision between the Pacific and North America plates and the subsequent thrusting movements in the Mesozoic. The deposits are underlain by basement rocks of Paleozoic carbonates with highly variable topography. The oil sands deposits were formed during the Early Cretaceous transgression which occurred along the Cretaceous Interior Seaway in North America. The oil-sands-hosting McMurray and Wabiskaw deposits in the Athabasca area consist of the lower fluvial and the upper estuarine-offshore sediments, reflecting the broad and overall transgression. The deposits are characterized by facies heterogeneity of channelized reservoir sands and non-reservoir muds. Main reservoir bodies of the McMurray Formation are fluvial and estuarine channel-point bar complexes which are interbedded with fine-grained deposits formed in floodplain, tidal flat, and estuarine bay. The Wabiskaw deposits (basal member of the Clearwater Formation) commonly comprise sheet-shaped offshore muds and sands, but occasionally show deep-incision into the McMurray deposits, forming channelized reservoir sand bodies of oil sands. In Canada, bitumen of oil sands deposits is produced by surface mining or in-situ thermal recovery processes. Bitumen sands recovered by surface mining are changed into synthetic crude oil through extraction and upgrading processes. On the other hand, bitumen produced by in-situ thermal recovery is transported to refinery only through bitumen blending process. The in-situ thermal recovery technology is represented by Steam-Assisted Gravity Drainage and Cyclic Steam Stimulation. These technologies are based on steam injection into bitumen sand reservoirs for increase in reservoir in-situ temperature and in bitumen mobility. In oil sands reservoirs, efficiency for steam propagation is controlled mainly by reservoir geology. Accordingly, understanding of geological factors and characteristics of oil sands reservoir deposits is prerequisite for well-designed development planning and effective bitumen production. As significant geological factors and characteristics in oil sands reservoir deposits, this study suggests (1) pay of bitumen sands and connectivity, (2) bitumen content and saturation, (3) geologic structure, (4) distribution of mud baffles and plugs, (5) thickness and lateral continuity of mud interbeds, (6) distribution of water-saturated sands, (7) distribution of gas-saturated sands, (8) direction of lateral accretion of point bar, (9) distribution of diagenetic layers and nodules, and (10) texture and fabric change within reservoir sand body.

  • PDF

Seasonal distribution and primary production of microphytobenthos on an intertidal mud flat of the Janghwa in Ganghwa Island, Korea (강화도 장화리 갯벌에서 저서미세조류의 계절적 분포 및 일차 생산력)

  • Yoo, Man-Ho;Choi, Joong-Ki
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.1
    • /
    • pp.8-18
    • /
    • 2005
  • We studied seasonal distribution of the microphytobenthos and their primary production with $C^{14}$ method and carried out pigment analysis with HPLC in an estuarine mudflat of the Ganghwa Island, Korea from May 2002 to April 2004. The abundances of microphytobenthos were higher at the middle than upper part and lower part of intertidal flat. Abundances of microphytobenthos ranged from $2.3{\times}10^5\;cells\;cm^{-2}$ to $140.9{\times}10^5\;cells cm^{-2}$. The bloom of microphytobenthos was observed in the early spring and then it decreased from spring to summer and autumn. The pennate diatom was a predominated group among the microphytobenthos in this area. The dominant species were Paralia sulcata, Cylindrotheca closterium and Nitzschia sp.. Nitzschia sp. and Cylindrotheca closterium were predominant in February. The results of pigment analysis suggest the presence of diatoms, euglenophytes, chlorophytes, cyanobacteria, cryptophytes, chrysophytes, prymnesiophytes, dinoflagellates and prasinophytes. The biomass of microphytobenthos ranged from 1.18 to 34.25 mg chl-a $m^{-2}$, with a mean of 7.60 mg chl-a $m^{-2}$. The mean ratio of Fuco/Chl a was 0.7 which indicates that most of biomasses of microphytobenthos were due to diatoms. The ratios of Chl b/Chl a ranged from 0 to 0.82(with a mean of 0.17), implying that euglenophytes and chlorophytes lived together in special period seasonally. Temporal variation of primary production ranged from 4.2 to 113.0 $mgC{\cdot}m^{-2}{\cdot}hr^{-1}$(mean value was 33.9 $mgC{\cdot}m^{-2}{\cdot}hr^{-1}$ and initial slope$({\alpha})$ was measured from 0.002-0.005$(mgC\;mgchl-a^{-1}\;hr^{-1}){\cdot}({\mu}E\;m^{-2}\;s^{-1})^{-1}$. Assimilation number$(P_m)$ was in the range of 0.50-1.32 $mgC{\cdot}mgChl-a{\cdot}hr^{-1}$ and daily primary production ranged from 20.9 to 678.1 $mgC{\cdot}m^{-2}{\cdot}d^{-1}$(mean value was 206.72 $mgC{\cdot}m^{-2}{\cdot}^{-1}$).

The 2009-based detailed distribution pattern and area of Phragmites communis-dominant and Suaeda japonica-dominant communities on the Suncheon-bay and Beolgyo estuarine wetlands (순천만과 벌교 하구 연안습지의 2009년 기준 갈대 및 칠면초 우세 군집 분포양상과 면적 제시)

  • Hong, Seok Hwi;Chun, Seung Soo;Eom, Jin Ah
    • Journal of Wetlands Research
    • /
    • v.17 no.1
    • /
    • pp.26-37
    • /
    • 2015
  • Halophyte distribution pattern and area in the Suncheon-bay and Beolgyo estuary coastal wetlands were analyzed using KOMPSAT-2 landsat images were taken in 2008 and 2009, and field investigations were fulfilled for confirming the precise boundaries of individual halophyte areas. The salt-marsh vegetation in those areas can be classified mainly into two dominant communities: Suaeda japonica-dominant and Phragmites communis-dominant communities. In order to identify sedimentary characteristics, tidal-flat surface leveling and sedimentary facies analysis had been conducted. The sedimentary facies of marsh area are mostly silty clayey and clay facies with a little seasonal change and its slope is very gentle (0.0007~0.002 in gradient). Phragmites communis and Suaeda japonica communities were distributed in the mud-flat zone between 0.7 m and 1.8 m higher than MSL (mean sea level): zone of 1.1~1.8 m in the former and zone of 0.7~1.3 m in the latter. In the Suncheon-bay estuarine wetland, on the basis of 2009 distribution, Phragmites communis-dominant and Suaeda japonica-dominant communities are about $0.79km^2$ and $0.22km^2$ in distribution area, respectively. On the other hand, Bulgyo estuarine marsh shows that the distribution areas of Phragmites communis-dominant and Suaeda japonica-dominant communities are about $0.31km^2$ and 0.031km2 in distribution area, respectively. Individual 105 and 60 dominant community areas and their distribution patterns can be well defined and indicated in the Suncheon-bay and Bulgyo estuarine marshes, respectively. The distribution pattern and area of hylophyte communities analyzed in this study based on 2008/2009 satellite images would be valuable as a base of future monitoring of salt-marsh related studies in the study area which is the most important salt-marsh research site in Korea.