Browse > Article

Cloning and Expression of a Alkaline Protease from Bacillus clausii I-52  

Joo, Han-Seung (C & J Biotech. Jinju Bio21 Center)
Choi, Jang Won (Dept. of Bioindustry, Daegu University)
Publication Information
Journal of agriculture & life science / v.45, no.6, 2011 , pp. 201-212 More about this Journal
Abstract
The alkaline protease gene was cloned from a halo-tolerant alkalophilic Bacillus clausii I-52 isolated from the heavily polluted tidal mud flat of West Sea in Inchon Korea, which produced a strong extracellular alkaline protease (BCAP). Based on the full genome sequence of Bacillus subtilis, PCR primers were designed to allow for the amplification and cloning of the intact pro-BCAP gene including promoter region. The full-length gene consists of 1,143 bp and encodes 381 amino acids, which includes 29 residues of a putative signal peptide and an additional 77-amino-acid propeptide at its N-terminus. The mature BCAP deduced from the nucleotide sequence consists of 275 amino acids with a N-terminal amino acid of Ala, and a relative molecular weight and pI value was 27698.7 Da and 6.3, respectively. The amino acid sequence shares the highest similarity (99%) to the nattokinase precursor from B. subtilis and subtilisin E precursor from B. subtilis BSn5. The substrate specificity indicated that the recombinant BCAP could hydrolyze efficiently the synthetic substrate, N-Suc-Ala-Ala-Pro-Phe-pNA,and did not hydrolyze the substrates with basic amino acids at the P1 site. The recombinant BCAP was strongly inhibited by typical serine protease inhibitor, PMSF, indicating that BCAP is a member of the serine proteases.
Keywords
Cloning; Expression; Refolding; Alkaline protease; Bacillus clausii;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Banerjee, U. C., R. K. Sani, W. Azmi, and R. Soni. 1999. Thermostable alkaline protease from Bacillus brevis and its characterization as a laundry detergent additive. Process Biochem. 35: 213-219.   DOI   ScienceOn
2 Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI   ScienceOn
3 Deng, A., J. Wu, Y. Zhang, G. Zhang, and T. Wen. 2010. Purification and characterization of a surfactantstable high-alkaline protease from Bacillus sp. B001. Bioresource Technol. 101: 7100-7106.   DOI   ScienceOn
4 Gessesse, A. 1997. The use of nug meal as low-cost substrate for the production of alkaline protease by the alkaliphilic Bacillus sp. AR-009 and some properties of the enzyme. Bioresource Technol. 62: 59-61.   DOI
5 Horikoshii, K. 1999. Alkalophiles: Some applications of their products for biotechnology. Microbiol. Mol. Biol. Rev. 63: 735-750.
6 Hmidet, N., N. E. Ali, A. Haddar, S. Kanoun, S. K. Alya, and M. Nasri. 2009. Alkaline proteases and thermostable $\alpha$-amylase co-produced by Bacillus licheniformis NH1: Characterization and potential application as detergent additive. Biochem. Engineer. J. 47: 71-79.   DOI
7 Ito, S., T. Kobayashi, K. Ara, K. Ozaki, S. Kawai, and Y. Hatada, 1998. Alkaline detergent enzymes from alkaliphiles: enzymatic properties, genetics, and structures. Extremophiles. 2: 185-190.   DOI   ScienceOn
8 Jacobs, M. F. 1995. Expression of the subtilisin Carlsberg-encoding gene in Bacillus licheniformis and Bacillus subtilis. Gene 152: 67-74.
9 Jaouadi, B., S. Ellouz-Chaabouni, M. Rhimi, and S. Bejar. 2008. Biochemical and molecular characterization of a detergent-stable serine alkaline protease from Bacillus pumilus CBS with high catalytic efficiency. Biochimie. 90: 1291-1305.   DOI   ScienceOn
10 Jeong, S. J., G. H. Kwon, J. Y. Chun, J. S. Kim, C. S. Park, D. Y. Kwon, and J. H. Kim. 2007. Cloning of Fibrinolytic Enzyme Gene from Bacillus subtilis Isolated from Cheonggukjang and Its Expression in Protease-deficient Bacillus subtilis Strains. J. Microbiol. Biotechnol. 17: 1018-1023.
11 Joo, H. S., C. G. Kumar, G. C. Park, S. R. Paik, and C. S. Chang. 2002. Optimization of the production of an extracellular alkaline protease from Bacillus horikoshii. Process Biochem. 38: 155-159.   DOI   ScienceOn
12 Joo, H. S., C. G. Kumar, G. C. Park, S. R. Paik, and C. S. Chang. 2003. Oxidant and SDS-stable alkaline protease from Bacillus clausii I-52: Production and some properties. J. Appl. Microbiol. 95: 267-272.   DOI   ScienceOn
13 Kazan, D., A. A. Denizci, M. N. K. Oner, and A. Erarslan. 2005. Purification and characterization of a serine alkaline protease from Bacillus clausii GMBAE 42. J. Ind. Microbiol. Biotechnol. 32: 335-344.   DOI   ScienceOn
14 Joo, H. S., C. G. Kumar, G. C. Park, S. R. Paik, and C. S. Chang. 2004. Bleach-resistant alkaline protease produced by a Bacillus sp. isolated from the Korean polychaeta, Periserrula leucophryna. Process Biochem. 39: 1441-1447.   DOI   ScienceOn
15 Joo, H. S. and C. S. Chang. 2005a. Production of protease from a new alkalophilic Bacillus sp. I-312 grown on soybean meal: optimization and some properties. Process Biochem. 40: 1263-1270.   DOI   ScienceOn
16 Joo, H. S. and C. S. Chang. 2005b. Oxidant and SDS-stable alkaline protease from a halo-tolerant Bacillus clausii I-52: enhanced production and simple purification. J. Appl. Microbiol. 98: 491-497.   DOI   ScienceOn
17 Kumar, C. G. and H. Takagi. 1999. Microbial alkaline proteases: From a bioindustrial viewpoint. Biotechnol. Adv. 17: 561-594.   DOI   ScienceOn
18 Kumar, C. G., M. P. Tiwari, and K. D. Jany. 1999. Novel alkaline serine proteases from alkalophilic Bacillus sp.: purification and characterization. Process Biochem. 34: 441-449.   DOI   ScienceOn
19 Kunst, F., N. Ogasawara, I. Moszer, A. M. Albertini, G. Alloni, V. Azevedo, M. G. Bertero, P. Bessières, A. Bolotin, S. Borchert, R. Borriss, L. Boursier, A. Brans, M. Braun, S. C. Brignell, S. Bron, S. Brouillet, C. V. Bruschi, B. Caldwell, V. Capuano, N. M. Carter, S. K. Choi, J. J. Codani, I. F. Connerton, and A. Danchin. 1997. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature. 390: 237-238.
20 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 22: 680-685.
21 Park, S. S., S. L. Wong, L. F. Wang, and R. H. Doi. 1989. Bacillus subtilis subtilisin gene (aprE) is expressed from a $\sigma^A$ ($\sigma^{43}$) promoter in vitro and in vivo. J. Bacteriol. 171: 2657-2665.
22 Lee, A. R., G. M. Kim, G. H. Kwon, K. W. Lee, J. Y. Park, J. Y. Chun, J. H. Cha, Y. S. Song, and J. H. Kim. 2010. Cloning of aprE86-1 Gene Encoding a 27-kDa Mature Fibrinolytic Enzyme from Bacillus amyloliquefaciens CH86-1. J. Microbiol. Biotechnol. 20: 370-374.
23 Manachini, P. L. and M. G. Fortina. 1998. Production in sea-water of thermostable alkaline proteases by a halotolerant strain of Bacillus licheniformis. Biotechnol. Lett. 20: 565-568.   DOI   ScienceOn
24 Maurer, K. H. 2004. Detergent proteases. Curr. Opin. Biotechnol. 15: 330-334.   DOI   ScienceOn
25 Phadatare, S. U., V. V. Deshpande, and M. C. Srinvasan. 1993. High activity alkaline protease from Conidiobolus coronatus (NCL 86.8.20): enzyme production and compatibility with commercial detergents. Enz. Microb. Technol. 15: 72-76.   DOI   ScienceOn
26 Rao, M. B., A. M. Tanksale, M. S. Ghatge, and V. V. Deshpande. 1998. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62: 597-635.
27 Rao, C. S., T. Sathish, P. Ravichandra, and R. S. Prakasham. 2009. Characterization of thermo- and detergent stable serine protease from isolated Bacillus circulans and evaluation of eco-friendly applications. Process Biochem. 44: 262-268.   DOI   ScienceOn
28 Saeki, K., K. Ozaki, T. Kobayashi, and S. Ito. 2007. Detergent Alkaline Proteases: Enzymatic Properties, Genes, and Crystal Structures. J. Biosci. Bioeng. 103: 501-508.   DOI   ScienceOn
29 Samal, B. B., B. Karan, and Y. Stabinsky. 1990. Stability of two novel serine proteinases in commercial laundry detergent formulations. Biotechnol. Bioeng. 28: 609-612.
30 Sousa, F., S. Jus, A. Erbel, V. Kokol, A. Cavaco-Paulo, and G. M. Gubitz. 2007. A novel metalloprotease from Bacillus cereus for protein fibre processing. Enz. Microb. Technol. 40: 1772-1781.   DOI   ScienceOn
31 Tunlid, A., S. Rosen, B. Ek, and L. Rask. 1994. Purification and characterization of an extracellular serine protease from the nematode-trapping fungus Arthrobotrys oligospora. Microbiol. 140: 1687-1695.   DOI   ScienceOn
32 Yang, J. K., I. L. Shih, Y. M. Tzeng, and S. L. Wang. 2000. Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastes. Enz. Microb. Technol. 26: 406-413.   DOI