• Title/Summary/Keyword: tidal mud flat

Search Result 95, Processing Time 0.029 seconds

Characteristics and Standards of Domestic Tidal Flat Mud Marine Healing Resources (국내 갯벌머드 해양치유자원의 특성 및 기준에 관한 연구)

  • Seonyoung Park;Jeongwon Kang;Yonggi Jeong;Yeonje Cho
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.386-393
    • /
    • 2023
  • The domestic marine healing industry is undergoing significant revitalization efforts, with a focus on understanding the efficacy and effectiveness of marine healing resources. This study establishes utilization and management standards through a detailed analysis of the active components within well-recognized marine healing mud materials. Samples of mud materials were collected from domestic tidal flats. These samples exhibited an average composition of 7.87% sand, 74.95% silt, and 17.17% clay, with a combined mud content (silt+clay)(silt+clay) consistently exceeding 90%. Notably, SiO2 emerged as the most prevalent effective ingredient at 68.4%, followed by Al2O3 (13.3%)>Fe2O3 (4.0%)>K2O (2.9%)>Na2O (2.3%)>MgO (1.6%)>CaO (1.0%)>TiO2 (0.7%), in terms of average content. Subsequently, through an analysis of effective ingredients, Si, Al, Fe, K, Na, Mg, and Ca were identified as elements demonstrating significant functionality. Among these, key indicator ingredients were selected for quality control, all of which were found to possess efficacious properties. Notably, K, Mg, and Ca exhibited particularly high concentrations. Based on these findings and referencing existing literature, it is recommended that domestic tidal flat mud resources earmarked for utilization as marine healing resources should possess a raw material mud content of no less than 70.0%. Moreover, the cumulative index components K2O+MgO+CaO should meet or exceed a threshold of 5.0% for optimal effectiveness.

Sediment Properties and Growth of Phragmites australis in Mud Tidal Flat (조간대 저토 환경과 갈대의 생장 특성)

  • Min, Byeong Mee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.3
    • /
    • pp.57-69
    • /
    • 2011
  • This study examined the relationship between Phragmites australis' growth and sediment properties at mud tidal flat of Donggum-ri, Gilsang-myeon, Gangwha-gun, Incheon city. Field survey was carried out from May, 2010 to October, 2010. Water content, soil texture, electric conductivity and water table depth for sediment, density, height, dry weight and flowering for P. australis were examined at several plots from the starting point (the coastal embankment) to the end point of the two populations. The result was as follows. Firstly, the water table increased along distance from the embankment at one line (N-line) but was similar at the other line (S-line) in a P. asustralis population. Water tables were higher out of than within a P. australis population at two populations. Secondary, in N-line, the height and dry weight of P. australis decreased along the distance from embankment but, in S-line, those were similar in its population. P. australis' growth was dependent on electric conductivity at lower layer (water table level) rather than upper one (the surface). Thirdly, density of P. australis changed during growing season and was similar in a population, except for the end point of patch. In summary, the growth and distribution of P. australis were dependent on salt content of tidal flat's sediment (water table level) and this was affected by fresh water of the inland.

Meiobenthic Community Structure in Mud Flat and Sand Flat in Yeochari, Ganghwado (강화도 여차리 니질갯벌과 사질갯벌에 서식하는 중형저서동물의 군집구조)

  • Kim, Dong Sung;Min, Won Gi;Je, Jong Geel
    • Journal of Wetlands Research
    • /
    • v.6 no.1
    • /
    • pp.43-55
    • /
    • 2004
  • Meiobenthic community structure was studied in intertidal mud flat and sand flat of Yeochari in Ganghwado in May and August, 1998. Sixteen groups of meiofauna were found at all study sites in the Yeochari tidal flats. Nematodes were the most dominant animal group among the meiofaunal groups as a whole. Sarcomastigophorans, harpacticoid copepods, nauplius larvae of crustaceans and ciliophorans which were also important components of the meiofaunal community. All of these five faunal groups comprised more than 90% of total meiofauna. The maximum total density of meiobenthos was $5.8{\times}10^6ind./m^2$ at the station of sand flat in August and the minimum density was $4.0{\times}10^6ind./m^2$ at same station in May. Biomass of meiobenthos was $1.5g/m^2$(May), $2.3g/m^2$(August) at mud flat and $1.7g/m^2$(May), $2.6g/m^2$(August) at sand flat. At the station of mud flat in May, the highest density was observed within 1cm in depth of upper sediment and steeply decreased increasing depth of sediment. At the sand flat station in August, the highest density was also observed within 1cm in depth of upper sediment and decreased with depth, while the concentration of the animals at the surface was not conspicuous as the mud flat. The value of N/C(nematodes/benthic harpacticoids) ratio was the highest at the station of sand flat in May and the lowest at the sand flat in August.

  • PDF

Mechanical properties of the mortar by replacing the fine aggregate in mud flat with cement mortar (시멘트 모르타르에서 잔골재를 갯벌로 대체한 모르타르의 특성)

  • Kang, Yun-Young;Lee, Seul-Bi;Yang, Seong-Hwan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.87-88
    • /
    • 2016
  • In the current construction market usage cement and aggregate is increasing continuously. This is progressing serious environmental pollution due to the carbon dioxide generated during cement production. Further, by using a large amount of aggregate, they tend to have even reduced natural resources. As a result, the reduction of carbon dioxide through the United Nations Framework Convention on Climate Change, the energy saving has been positioned as a global trend. Therefore, in this study, instead of fine aggregate fix the cement, by the use to increase the proportion of the tidal flats, to try to reduce the amount of cement and fine aggregate. Accordingly, according to increasing the proportion of the mud flat be analyzed for properties the compressive strength, tensile strength, flow, chloride test, workability of the mortar.

  • PDF

The Changing Process of the Tidal Landforms in Hampyeung Bay, Southwest Korea (함평만의 간석지 해안지형의 변화)

  • KIM, Nam-Shin;LEE, Min-Boo
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.4
    • /
    • pp.223-233
    • /
    • 2011
  • The aims of this study is about distribution characteristics of tidal coastal landforms, and that changing process in the Hampyeung Bay, which has a semi-enclosed bay like basin shape without inflow of stream, the mouth of open sea is narrow and forms with wide ends toward inland sea. The source of deposits are moved materials by tidal currents and from coastal slopes. Main landform elements of study area consist of tidal flat, tidal channels, intertidal sand bar, sea cliffs, and sea terrace. Tidal flats is classified with mud flat and mixed flat by grain size composition. Mud flats have developed at the shoreline area that tidal flat is closed to the continuity of gentle slope, and mixed flat developed at the foot of the sea cliffs and sea terraces. Quaternary deposits were identified in the coastal materials sedimented by the sea-level change. According to the analysis of grain size composition during last ten years, sands and silt has increased 2% and 6% respectively, clay has been decreased by 9%. The concaved tidal flats are colonized by salt plants. Areal changes of salt plants expanded near four times from 2.4km2 at the year 2001 to 9.3km2 at the year 2009. During the same periods, mean grain size became coarser from 6.5φ to 4.5φ at the salt plants area.

Tidal-Flat Sedimentation in a Semienclosed Bay with Erosional Shorelines: Hampyong Bay, West Coast of Korea (해안침식이 우세한 반폐쇄적 조간대의 퇴적작용: 한국 서해안의 함평만)

  • Chang, Jin-Ho;Kim, Yeo-Sang;Cho, Yeong-Gil
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.2
    • /
    • pp.117-126
    • /
    • 1999
  • Hampyong Bay is a semienclosed and macrotidal bay which opens to the eastern Yellow Sea through a narrow inlet in the southwestern coast of Korea. In order to understand the tidal-flat sedimentation in the semienclosed setting, morphology, sediments, accumulation rate and sea cliff erosion were investigated in the tidal flat of Hampyong Bay. The tidal flat of Hampyong Bay lacks intertidal drainage systems, and generally shows the concave-upward profile whose relief is designated by marked morphological features such as high-tide beaches, intertidal sand shoals and tidal creeks. Surfacial sediments of the tidal flat mainly consist of mud, sandy mud, gravelly mud, gravelly sand and muddy gravel, thus showing the textural characteristics of multimodal grain-size distribution, poorly sorting and positive skewness. The sediments generally coarsen landward due to the increase in coarse fraction content. Sedimentary structures are deeply bioturbated, but parallel lamination and lenticular bedding are locally found in the mudflat near mean low water line. Annual accumulation rates across the tidal flat (along Line SM) average -5.2 cm/yr with a range of -45.8~+4.2 cm/yr, indicating that the tidal flat is erosional. In general, erosion rates of upper and lower tidal flat are higher than those of middle tidal flat. Seasonally, the erosion rates are much higher during spring and winter when dominant wind direction corresponds to the long axis of Hampyong Bay. Sea cliffs are eroded at a rate of 1.4 m/yr. The biggest sea cliff erosion generally occurs 1~2 months later after tidal flats were extensively eroded. Such erosions of tidal Oats and sea cliffs in the semienclosed bay setting are interpreted to be due to wind waves coupled with local sea-level rise.

  • PDF

Distribution of bacterial population and activities at the tidal flat in southern area of Ganghwa Island, Korea (강화도 남단 갯벌에서의 세균수 및 활성의 분포)

  • Kwon, Kae Kyoung;Lee, Hong Kum;Je, Jong Geel
    • Journal of Wetlands Research
    • /
    • v.7 no.2
    • /
    • pp.37-52
    • /
    • 2005
  • Vertical distribution of bacterial population and activities were compared between the muddy and sandy sediment of the tidal flat located in southern area of Ganghwa Island. The average of bacterial number and activities in mud flat was slightly higher than that in sand flat. Bacterial number was markedly increased at the sandflat during the investigation period, which seemed to be the result of increase of mud content. The number and activities of microorganisms in mudflat was comparable to that of the mangrove sediments. There was no differences in bacterial number with the depth, but the aminopeptidase activity and bacterial productivity were decreased markedly within 3~5cm depth of sediment due to the availability of carbon sources and molecular oxygen in pore water. The number and activities of microorganisms in mudflat did not correlated with the distribution of benthic microalgae; however, those in sand flat were closely correlated with the distribution of benthic microalgae. The distribution of marsh plant in the mudflat area might be the reason of the difference.

  • PDF

The Stratigraphic and Sedimentologic Natures of the Kanweoldo Deposit Overlain by the Holocene Tidal Deposits, Cheonsu Bay, West Coast of Korea (한국 서해 천수만 북동부에 발달한 제4기 현세 조간대층 하위의 간월도층 연구)

  • 김여상;박용안
    • The Korean Journal of Quaternary Research
    • /
    • v.2 no.1
    • /
    • pp.13-24
    • /
    • 1988
  • The deposit (named Kanweoldo deposit) unconformably overlain by the Holocene tidal deposit is mainly exposed along the tidal channel of the Sajangpo tidal flat of Cheonsu Bay, west coast of Korea. The Kanweoldo deposit's sedimentary textures, sedimentary structures and erosion surfaces of the stratigraphic events have been investigated. The Kanweoldo deposit is mainly composed of mud, silt and sandy mud. The sedimentary criteria indicating intertidal deposit i.e. lenticular bedding, thinly and coarsely interlayered bedding, wavy lamination and flaser bedding are positively found in the Kanweoldo deposit. The deposit is semi-consolidated and brown in color, and has erosional contact (stratigraphic boundary) with the overlying Holocene tidal deposit. Considering such Kanweoldo deposit's sedimentary characteristics and stratigraphic relation with the Holocene tidal deposit, the Kanweoldo deposit seems to be deposited under intertidal environment during Riss-Wurm interglacial period and subaerially exposed and eroded during the last glacial period.

  • PDF

Characteristics and Stratigraphy of Late Quaternary Sediments on a Macrotidal Mudflat Deposit of Namyang Bay, Western Coast of Korea

  • Lim, D. I.;Choi, J. Y.;Jung, H. S.
    • Journal of the Korean earth science society
    • /
    • v.24 no.1
    • /
    • pp.46-60
    • /
    • 2003
  • In Namyang Bay of western Korea, macrotidal-flat deposits are divisible into three late Quaternary units: Unit M1 of upper marine mud, Unit T1 of middle siderite-bearing terrestrial clay, and Unit M2 of lower marine mud. Unit M1 represents typical Holocene intertidal mudflat deposits, showing a coarsening-upward textural trend. It probably resulted from the continual retrogradation of tidal flat during the mid-to-late Holocene sea-level rise. Reddish brown-color Unit T1 consists of homogeneous clay with abundant freshwater siderite grains and plant remains. Unit T1 is clearly separated from the overlying Unit M1 by a sharp lithologic boundary. Radiocarbon age, siderite grains and lithologic features indicate that Unit T1 is originated from freshwater bog or swamp deposition infilling the localized topographic lows during the early Holocene age. Overlain unconformably by early Holocene swamp clay, Unit M2 is orange to yellow in color and mottled, suggesting significant degree of weathering during the sea-level lowstand. Such subaerial oxidation is confirmed in the vertical profiles of geotechnical properties, clay mineral assemblages and magnetic susceptibility. Unit M2 appears to be correlated with the upper part of the late Pleistocene tidal deposits developed along the western Korean coast. The sedimentary succession of the Namyang-Bay tidal-flat deposit provides stratigraphic information for the Holocene-late Pleistocene unconformity and also permits an assessment of the preservation potential of the late Pleistocene marginal marine deposit along the western coast of Korea.

Changes in Macrobenthic Community Depending on the Anthropogenic Impact and Biological Factors of Boryeong Tidal Flat, Korea (보령 갯벌의 인위적 영향 및 생물학적 요인에 따른 대형저서동물 군집 변화)

  • SEUNG RYUL JEON;GIHO ONG;JIHO LEE;YUNA JEONG;JUN-HO KOO;KWANG-SEOK O;JONG-WOO PARK
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.28 no.4
    • /
    • pp.143-157
    • /
    • 2023
  • This study confirmed the characteristics of macrobenthic community due to anthropogenic environmental changes in the Boryeong Jugyo tidal flat, where the habitat of manila clam (Ruditapes philippinarum) and mud shrimp (Upogebia major) is separated. The total number of occurring species was 55 during the study period with an average habitat density of 338 ind./m2 and a biomass of 212.2 gWWt/m2. The number of occuring species increased from 27 species at the upper flat to 37 species at the lower flat, and the dominant species differed by tide levels (Upper: Leonnates persica, Middle: Heteromastus filiformis, Lower: R. philippinarum). The macro-benthic community sturctures of the top 10 species using cluster analysis and nMDS were divided into two groups, focusing on Manila clam culture farm of lower flats and middle flats with high habitat density, reflecting the influence of specific species. The sediment composition of the U. major habitat space fluctuated highly, but it was maintained annually, and the sorting coefficient was 2.1 𝜑, and the proportion of the same particle size was increased. In particular, because the middle flat has a dense anthropogenic impact, a dominant species, H. filiformis dominated and revealed a relationship with the density of burrow holes of U. major, which is considered to be a biological interaction between these two macrofauna in this tidal flat.