• Title/Summary/Keyword: tibialis anterior muscle

Search Result 366, Processing Time 0.023 seconds

The effects of PPARβ/δ overexpression on PGC-1α mRNA and protein stability after accute endurance exercise in mice skeletal muscle (생쥐의 골격근에 PPARβ/δ 과발현이 1회 지구성 운동 후 안정시 PGC-1α mRNA와 단백질 안정성에 미치는 영향)

  • Koh, Jin-Ho;Jung, Su Ryun;Kim, Ki-Jin
    • 한국체육학회지인문사회과학편
    • /
    • v.55 no.4
    • /
    • pp.507-516
    • /
    • 2016
  • The purpose of this study is to identify the effects of PPARβ/δ over-expression on PGC-1α mRNA and protein stability after single bout of swimming exercise in mice skeletal muscle. Empty vector (EV) or PPARβ/δ was over-expressed in tibialis anterior(TA) using electroporation(EPO) technique to compare with non-treatment muscle(control; Con). TA muscles were dissected at 0h, 24h or 54h after termination of exercise. PGC-1α mRNA in Con, EV and PPARβ/δ over-expressed muscles were increased 6.8 fold (p<.001), 6.2 fold(p<.001) and 7.1 fold(p<.001), respectively, than sedentary(Sed) group at 0h after exercise and then reverted to Sed group levels at 24h and 54h after termination of exercise. PGC-1α and PGC-1α ubiquitination in EV treated muscles were increased 2.2 fold and 1.74 fold, respectively, than Sed group at 24h after termination of exercise, and then reverted to Sed group levels at 54h after termination of exercise. PGC-1α in PPARβ/δ over-expressed muscles at 24h and 54h after termination of exercise were increased 2.5 fold and 2.2 fold, respectively, than Sed group, but PGC-1α ubiquitination was not increased at 24h and 54h after termination of exercise. Our results indicate that PPARβ/δ over-expression does not increase PGC-1α mRNA stability, but increase PGC-1α protein stability through post-translation mechanism after termination of exercise.

The Comparison of Lower Limb Muscle Activities and VMO/VLO Ratio according to Direction for Using the Ramp in the Normal Adult (정상성인에서 경사로의 사용 방향이 다리근육의 활성도 및 안쪽/가쪽넓은근의 비율에 대한 연구)

  • Lee, Sangyeol;Lee, Sukyoung
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.5 no.3
    • /
    • pp.57-61
    • /
    • 2017
  • Purpose : The purpose of study was to find out the environmental risk factor that can be easily occurred imbalance muscle activities according to direction for using the ramp during one legged standing. Method : The subjects were 20 normal adults with a mean age of $23.15{\pm}2.14years$ and a Body Mmass Index (BMI) of $22.74{\pm}1.07$. Participants were measured muscle activities on vastus medialis, vastus lateralis, tibialis anterior, peroneus longus during one legged stance at four conditions ramp (down ramp, up ramp, medial ramp, lateral ramp). The statistical analyses were performed using IBM SPSS(Ver. 23) and p-value less than .05 were considered statistically significant for all cases. Result : In this study, the activity of the lower extremity muscle and the ratio of the vastus medial and lateral muscles according to the direction of use of the ramp were investigated. The changes in the muscle activity of the lower limbs along the direction of the ramp were significantly different between the vastus medial muscle and the peroneus longus muscle. Conclusion : For a short time on a ramp or a pedestrian crossing, a clerk in a ramp can move or stand by placing the lower limbs in various directions, but if performed in consideration of the individual's disease characteristics or unstable foot position, It is thought that there will be an effect to prevent on the ankle and knee unstability.

Positive and Negative Covariation Mechanism of Multiple Muscle Activities During Human Walking (보행 과정에서 발생하는 복합 근육 활성의 양성 및 음성 공변 메커니즘)

  • Kim, Yushin;Hong, Youngki
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.1
    • /
    • pp.173-184
    • /
    • 2018
  • In human walking, muscle co-contraction which produces simultaneous activities of multiple muscles is important in motor control mechanism of the central nervous system. This study aims to understand positive and negative covariation mechanism of inter-muscle activities during walking. In this study, we measured electromyography (EMG) in leg muscles. To identify motor modules, we recored EMG from 4 leg muscles bilaterally (the tibialis anterior, medial gastrocnemius, rectus femoris and medial hamstring muscles) and performed non-negative matrix factorization (NMF) and principa component analysis (PCA). Then, we computed covariation values from various combinations between muscles or motor modules and used two-way repeated measures analysis of variance to identify significantly different covariation patterns between muscle combinations. As the results, we found significant differences between covariation values of muscle combinations (p < 0.05). muscle groups within the same motor modules produced the positive covariations. However, there were strong negative covariation between motor modules. There was negative covariation in all muscle combination. Stable inter-module negative covariation suggests that motor modules may be the control unit in the complex motor coordination.

Change of lower limb muscle activation according to the use of arm sling in normal subjects (정상인의 팔걸이 사용에 따른 보행 시 하지 근 활성도의 변화)

  • Oh, Gku Bin;Son, Ga Eul;Kim, Seo Yeon;Kim, Hae Deun;Back, Seung Min;Song, Hyen Su;Yun, Sang Hyeok;Cho, Ki Hun
    • Journal of Korean Physical Therapy Science
    • /
    • v.27 no.3
    • /
    • pp.67-74
    • /
    • 2020
  • Background: The purpose of this study was to investigate the change of lower limb muscle activation according to the use of arm sling in normal subjects. Design: Cross-sectional Study Methods: Seven healthy subjects (6 males and 1 female, 25.42 years, 173.57 cm, 71.71 kg) were recruited on a voluntary basis. To measure the lower limb muscle activation during walking with and without arm sling, we used a wireless surface electromyography (sEMG) (FreeEMG1000, BTS Bioengineering, Milano, Italy). Six wireless sEMG electrodes were attached to the following three major muscle groups of the both side lower limb: rectus femoris, biceps femoris, medial gastrocnemius. All subjects wore arm sling on their right side during measurement. Results: In the stance phase, there was a significant increase in right side rectus femoris muscle activation in walking without arm sling compared to the walking with arm sling (p<.05). Additionally, In the stance phase, there was a significant increase in left side tibialis anterior muscle activation in walking without arm sling compared to the walking with arm sling (p<.05). Conclusion: The results of this study suggest that there is a significant association between the arm swing restriction and lower limb muscle activation. Therefore, it seems that it can be applied as basic data for gait training with an arm slings.

Effects of the Width in the Base of Support on Trunk and Lower Extremity Muscle Activation During Upper Extremity Exercise (상지운동 동안 기저면의 넓이 변화가 체간과 하지의 근 활성도에 미치는 영향)

  • Yun, Hye-Seon;Choi, Houng-Sik;Kim, Tack-Hoon;Cynn, Heon-Seock;Lee, Kang-Sung
    • Physical Therapy Korea
    • /
    • v.11 no.3
    • /
    • pp.43-50
    • /
    • 2004
  • This study was designed to determine the effects of different widths in the base of support (BOS) on trunk and lower extremity muscle activation during upper extremity exercise. Twenty-seven healthy male subjects volunteered for this study. Exercises were performed for a total of 10 trials with a load of 10 repetitions maximum (10 RM) for each of the various widths of BOS (10 cm, 32 cm, 45 cm). The width of a BOS is the distance between each medial malleoli when a subject was in a comfortable standing position. Electromyography was used to determine muscle activation. Surface bipolar electrodes were applied over the tibialis anterior, medial gastrocnemius, biceps femoris, rectus femoris, gluteus maximus, upper rectus abdominis, and elector spinae muscle. Electromyographic (EMG) root mean square (RMS) signal intensity was normalized to 5 seconds of EMG obtained with a maximal voluntary isometric contraction (MVIC). The data were analyzed by atwo-factor analysis of variance (ANOVA) with repeated-measures ($3{\times}7$) and Bonferroni post hoc test. The results were as follows: (1) There were significant differences in the width of the BOS (p=.006). (2) The post hoc test showed significant differences with the BOS between 10 cm and 32 cm, between 10 cm and 45 cm and between 32 cm and 35 cm (p=.008, p=.003, p=.011). (3) There was no interaction with the BOS and muscle. (p=.438) There were no significant differences in the muscle activation (p=.215).

  • PDF

Effects of Whole Body Vibration Training on Lower Limb Muscle Thickness and Gross Motor Function in Children with Spastic Cerebral Palsy (전신 진동자극 훈련이 경직형 뇌성마비 아동의 하지 근 두께와 대동작 운동기능에 미치는 영향)

  • Lee, Won-Bin;Lee, Han-Suk;Park, Sun-Wook;Yoo, Jun-Ki
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.14 no.4
    • /
    • pp.195-201
    • /
    • 2019
  • PURPOSE: This study aimed to quantify the effects of whole body vibration (WBV) stimulation training on the muscle thickness and gross motor function in children with spastic cerebral palsy. METHODS: Twenty children diagnosed with spastic cerebral palsy were assigned randomly to the Whole Body Vibration (WBV) group (n=10) and control group (n=10). The WBV group received vibration therapy including five different therapy, and the control group received only five general physiotherapy sessions. After 10 weeks of intervention, the muscle thickness was measured using ultrasound, and the Gross Motor Function D and E items were evaluated. RESULTS: After the intervention, both groups showed a significant increase in muscle thickness and gross motor function (p<.05). The WBV group showed a significant increase in the quadriceps femoris and tibialis anterior muscles compared to the control group, whereas no significant increase in the gastrocnemius muscle was observed (p<.05). The WBV group showed significant improvement in the Gross Motor Function D and E scores compared to the control group (p<.05). CONCLUSION: WBV training may be a useful way of improving the lower extremity muscle strength in children with spastic cerebral palsy, which may help improve the gross motor function.

The Comparison of Muscle Activation of Waist and Lower Limb during Lifting an Object from Floor according to Foot Position in Twenties Wearing a Skirt

  • Lee, Han-Suk;Kim, Joon-Ho;Park, Jung-So;Park, Sun-Wook
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.9 no.3
    • /
    • pp.243-248
    • /
    • 2014
  • PURPOSE: This study was aim to the change of muscle activities of lower extremity and waist during lifting a small object on the floor according to different foot position of women in their twenties wearing a skirt. METHODS: 9 women in their twenties wearing a skirt were selected and were measured the muscle activities of medial gastrocnemius (MG), tibialis anterior (TA), vastus lateralis (VL) and iliocostalis (IC) when they lifted a small object on the floor. The two different foot position employed were "both feet posed straight side by side" (condition 1) and "both feet posed diagonally to 45 degree" (condition 2) used. The order of feet position was selected randomly and the subject took a rest for 30 min between tests to prevent muscle fatigue. We calculated the mean and standard deviation of muscle activities and used Mann-Whitney U test to compare the difference between the two foot positions with SPSS(IBM Korea) RESULTS: The muscle activity of condition 2 was greater than that of condition 1 in right side of TA, VL, and IC and left side of TA, VL, MG and IC. The right side of TA, VL and left side VL were significant difference between condition 1 and condition 2(p<.05). CONCLUSION: We suggest "both feet posed straight side by side" position is better if a woman wearing a skirt lift the small object and it will help prevent the low back and lower limb problems in the future.

Effects of Game Based Weight-Bearing Training on Lower Extremity Muscle Activation and Balance in Stroke Patients

  • Yang, Dae-jung;Park, Seung-Kyu;Kang, Jeong-Il;Kim, Je-Ho;Jeong, Dae-Keun;Choi, Jong-Uk
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.4
    • /
    • pp.264-269
    • /
    • 2015
  • Purpose: The objective of this study was to determine the effects of game based weight-bearing training (GBWBT) on lower extremity muscle activation and balance in stroke patients. Methods: Thirty subjects were randomly divided into two groups: experimental group I (n=15) and control group II (n=15). Each group was provided intervention under two conditions, as follows: in the Game based weight-bearing training (group I), 30 minutes per day, five times per week, with physical therapy for 30 minutes, and in the functional weight-bearing training (group II), 30 minutes per day, five times per week, with physical therapy for 30 minutes The training program was conducted for a period of eight weeks. Subjects were measured on lower extremity muscle (rectus femoris, biceps femoris, tibialis anterior, gastrocnemius) by electromyography and balance by Biorescue. ANCOVA was performed for comparison of lower extremity muscle activation and balance between different intervention methods. All patients were evaluated at baseline and at the end of the treatment protocol. Statistical significance was tested between the patients before and after treatment by t-test. Results: Significant difference in lower extremity muscle activation was observed in experimental group I compared with control group II (p<0.05). Significant difference in balance was observed in experimental group I compared with control group II (p<0.001). Conclusion: Findings of this study suggest that game based weight-bearing training may have a beneficial effect on improvement of lower extremity muscle activation and balance in stroke patients.

The Analysis of the Muscle Fatigue for the Lower Limbs Muscle during the Level and Downhill Running (평지와 내리막 달리기 시 하지 근육의 근 피로에 관한 연구)

  • Moon, Gon-Sung;Lee, Eui-Lin
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.4
    • /
    • pp.181-190
    • /
    • 2007
  • The purpose of this study was to analyze the muscle fatigue for lower limbs during the level and downhill running. The subjects were 6 males of twenties who have no experience to get the injury in the lower limbs and required to run on the level and downhill which was -7% grade treadmill at 8.3km/h. EMG signal was gained by ME3000P8 Measurement Unit and computed the Median Frequency(MF) with the power spectrum analysis in the Megawin software. Rectus femoris(RF), Vastus lateralis(VL), Gluteus medius(GLU), Biceps Femoris(BF), gastrocnemius medial head(GM), gastrocnemius lateral head(GL), Tibialis anterior(TA) were selected. The result of this study were as follows: The MF of RF decreased in the downhill running than level running in length of time but, the MF of VL was opposite. The MF of BF decreased in the level and downhill running, but, the MF of BF decreased much in the level than downhill running. The MF of GLU decreased much in the downhill running but, almost no change in the level running. The MF of TA decreased in the level running than downhill running. The MF of GL decreased in the level running but, the MF of GM decreased in the downhill running in length of time. This study analyzed the muscle fatigue of the lower limbs with the median frequency on the basis of an assumption that the impact force for the flexion and extension of the joint and the body mass may be much in the eccentric contraction such as the downhill running than level running. RF and GM showed the muscle fatigue in the downhill running than level running. BF and GL showed the muscle fatigue in the level running than downhill running.

Effect of Proprioceptive Neuromuscular Facilitation Applied to the Unilateral Upper Extremity on the Muscle Activation of Contralateral Lower Extremity (펀측 상지에 적용된 고유수용성 신경근 촉진법이 반대측 하지의 근 활성도에 미치는 영향)

  • Kim, Kyung-Hwan;Park, Ji-Won;Bae, Sung-Soo
    • PNF and Movement
    • /
    • v.4 no.1
    • /
    • pp.9-18
    • /
    • 2006
  • Purpose: The purpose of this study was to investigate the effect of Proprioceptive Neuromuscular Facilitation (PNF) applied to the unilateral upper extremity on the muscle activation of contralateral lower extremity. Twenty-two healthy subjects (mean age of 23.7 years) participated in this study. Method : PNF patterns applied on the unilateral upper extremity in all subjects were the flexion/abduction/external rotation and lifting pattern. The hold and appoximation techniques for the irradiation were applied to end range of both patterns. Muscle activations in four patterns were measured in vastus medialis, tibialis anterior, rectus femoris, and gastrocnemius medial muscles of contralateral lower extremity using surface EMG system. Each EMG value in individual muscle was normalized for maximal voluntary contraction. The data were analyzed by one factor analysis of variance with repeated measure test. Result : There were significant differences in the between-subject effect (muscles) and within-subject effect (patterns) in comparison of muscle activation by application of PNF patterns (p<.05). The irradiation led to higher activation in the flexion/abduction/external rotation pattern than that of lifting pattern in all muscles (p<.05). The approximation techniques revealed more activations than these of hold technique in all muscles (p<.05). Conclusion : These results suggest that the application of PNF patterns to the unilateral upper extremity affect on the muscle activation of contralateral lower extremity and increase according to the intensity of resistance. This mechanism of contralateral effect might provide a help to the development of treatment method for the affected side and functional improvement for the patients who have damages of central nervous system or musculoskeletal problems by orthopedic injury.

  • PDF