• Title/Summary/Keyword: tibialis anterior muscle

Search Result 366, Processing Time 0.027 seconds

Development and evaluation of estimation model of ankle joint moment from optimization of muscle parameters (근육 파라미터 최적화를 통한 발목관절 모멘트 추정 모델 개발 및 평가)

  • Son, J.;Hwang, S.;Lee, J.;Kim, Y.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.4
    • /
    • pp.310-315
    • /
    • 2010
  • Estimation of muscle forces is important in biomechanics, therefore many researchers have tried to build a muscle model. Recently, optimization techniques for adjusting muscle parameters, i.e. EMG-driven model, have been used to estimate muscle forces and predict joint moments. In this study, an EMG-driven model based on the previous studies has been developed and isometric and isokinetic contraction movements were evaluated to validate the developed model. One healthy male participated in this study. The dynamometer tasks were performed for maximum voluntary isometric contractions (MVIC) for ankle dorsi/plantarflexors, isokinetic contraction at both $30^{\circ}/s$ and $60^{\circ}/s$. EMGs were recorded from the tibialis anterior, gastrocnemius medialis, gastrocnemius lateralis and soleus muscles at the sampling rate of 1000 Hz. The MVIC trial was used to customize the EMG-driven model to the specific subject. Once the subject's own model was developed, the model was used to predict the ankle joint moment for the other two dynamic movements. When no optimization was applied to characterize the muscle parameters, weak correlations were observed between the model prediction and the measured joint moment with large RMS error over 100% (r = 0.468 (123%) and r = 0.060 (159%) in $30^{\circ}/s$ and $60^{\circ}/s$ dynamic movements, respectively). However, once optimization was applied to adjust the muscle parameters, the predicted joint moment was highly similar to the measured joint moment with relatively small RMS error below 40% (r = 0.955 (21%) and r = 0.819 (36%) and in $30^{\circ}/s$ and $60^{\circ}/s$ dynamic movements, respectively). We expect that our EMG-driven model will be employed in our future efforts to estimate muscle forces of the elderly.

Comparative Analysis on Muscle Function and EMG of Trunk and Lower Extremity in Short and Long Distance Athlete (육상 단거리 선수와 장거리 선수의 체간과 하지의 근기능 및 근전도 비교 분석)

  • Jung, Jae-Hu;Kim, Jung-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.1
    • /
    • pp.9-16
    • /
    • 2012
  • The purpose of this study was to compare and analyze muscle function and EMG of the trunk and the lower extremity in short and long distance athletes and in order to determine difference in peak torque per unit weight, muscle power per unit weight, endurance ratio, and %MVIC classified by muscle. For that purpose, isokinetic muscle function tests for waist, knee, and ankle joints and EMG measurements for the trunk and the lower extremity muscle with running motion were conducted for 7 short and long distance high school athletes respectively. The study over muscle function of waist, knee, and ankle joints indicates that peak torque per unit weight of short distance athletes is higher than that of long distance athletes in extension and flexion of waist joint, plantar flexion of right ankle joint, and dorsi flexion of left ankle joint. In case of the muscle power per unit weight of short distance athletes is also higher than long distance athletes in waist, knee, and ankle joints. No difference in endurance ratio of waist, knee, and ankle joints between the two groups was founded. The results of the test over EMG of the trunk and the lower extremity show that %MVIC of erector spinae, rectus femoris, vastus medialis, vastus lateralis, and tibialis anterior is higher than that of long distance athletes in support phase. The above results proved to be the same in flight phase except for %MVIC of medial gastrocnemius. In other words, %MVIC of medial gastrocnemius for short distance athletes turned out to be higher than that of long distance athletes in flight phase.

Comparison of Flatfoot on the Activities of Medial and Lateral Plantar Flexor Muscle During Heel Rising

  • Jung, Hui-won;Yoo, Won-gyu
    • Physical Therapy Korea
    • /
    • v.28 no.2
    • /
    • pp.132-137
    • /
    • 2021
  • Background: Flat feet can be identified by assessing the collapse of the medial longitudinal arch (MLA) and these conditions can trigger epidemiological changes in the feet. Many of previous studies compared the muscle activity of lower body in terms of intervention and dynamics to treat the structural defect of flat feet. However, few studies have investigated or analyzed the muscle activity of gastrocnemius muscle in the subjects with flat feet. Objects: This study investigated the differences in changes of medial and lateral plantar flexors in subjects with flat feet during bipedal heel-rise (BHR) task and analyzed the differences in muscle activity between two groups by measuring the electromyography (EMG) of abductor hallucis (AH), tibialis anterior (TA), medial gastrocnemius (MG), lateral gastrocnemius (LG). Methods: A total of Twenty one adult females participated in this experiment. Subjects were assigned to groups according to the navicular drop test. The task was applied to the leg, where the heel lifting action prevailed. The muscle activity of the medial and lateral feet plantar flexors was evaluated, and the % maximum voluntary isometric contractions (%MVIC) of these were compared. Results: For the difference between groups the muscle activity (%MVIC) of LG muscle was statistically significantly low in flat feet group compared to healthy feet group (flat feet: 64.57, healthy feet: 90.17; p < 0.05). Conclusion: The results of this study will contribute to identifying the muscle activities of medial and lateral feet plantar flexors among subjects with flat feet, which can cause abnormal epidemiological changes in the feet.

EMG Power Spectrum Analysis of Wearing Roller Shoes on Muscle Fatigue in the Lower Extremity during Walking (롤러 슈즈 착용 후 보행시 근피로 상태에서 하지근의 근전도 Power Spectrum 분석)

  • Kim, Youn-Joung;Yoon, Chang-Jin;Chae, Won-Sik;Lee, Min-Hyung;Kim, Hun-Soo;Jung, Mi-Ra
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.239-245
    • /
    • 2007
  • The purpose of this study was to compare the electromyography signal's power spectrum mean and median tendencies appearing in the lower extremity during walking while wearing roller shoes. 9 male subjects volunteered who have no experience riding inline-skate or roller-skate, and have no record of musculoskeletal disorder. Subjects walked on treadmill twice for an hour (Once a week, one trial with the roller on and the other without roller, Walking velocity = 1.39 m/s). Electromyography was measured every 15 minute (0, 15, 30, 45, 60 minutes). Surface electrode sticked muscle at rectus femoris(R.F.), vastus lateralis(V.L.), vastus medialis(V.M.), biceps femoris(B.F.), tibialis anterior(T.A.), gastrocnemius lateralis(G.L.), gastrocnemius medialis(G.M.). At Rectus femoris, Vastus Lateralis, Vastus medialis, and Biceps femoris showed no statistically significant decrease of median frequency or mean edge frequency as time passes. Also, between two treatments (wearing the roller shoes vs not wearing the roller shoes), no statistically significant difference. After 60 minutes, mean edge frequency showed statistically significant decrease at tibalis anterior and after 45 minutes, mean edge frequency showed statistically significant decrease compared to wearing roller shoes without the wheels at gastrocnemius lateralis. At gastrocnemius medialis after 30 minutes, median frequency showed statistically significant decrease, and showed statistically significant difference compared to the control group. Wearing the roller shoes with wheels for a long time resulted in statistically significant decrease of mean edge frequency and median frequency in lower extremity, especially in shank muscles. Increase of wearing time of roller shoes and walking on a bumpy road wearing roller shoes with wheels result fatigue and thus, danger of injury.

Anatomical review of dorsalis pedis artery flap for the oral cavity reconstruction (구강재건을 위한 족배동맥피판의 해부학적 고찰)

  • Kim, Soung-Min;Kang, Ji-Young;Eo, Mi-Young;Myoung, Hoon;Lee, Suk-Keun;Lee, Jong-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.37 no.3
    • /
    • pp.184-194
    • /
    • 2011
  • The dorsalis pedis artery (DPA) was renamed from the anterior tibialis artery after it passed under the extensor retinaculum, and DPA travels between the extensor hallucis longus and extensor digitorum longus muscle along the dorsum of the foot. After giving off the proximal and distal tarsal, arcuate and medial tarsal branches, DPA enters the proximal first intermetatarsal space via the first dorsal metatarsal artery (FDMA), which courses over the first dorsal interosseous muscle (FDIM). For detailed knowledge of the neurovascular anatomy of a dorsalis pedis artery flap (DPAF) as a routine reconstructive procedure after the resection of oral malignant tumors, the precise neurovascular anatomy of DPAF must be studied along the DPA courses as above. In this first review article in the Korean language, the anatomical basis of DPAF is summarized and discussed after a delicate investigation of more than 35 recent articles and atlas textbooks. Many advantages of DPAF, such as a consistent flap vascular anatomy, acceptable donor site morbidity, and the ability to perform simultaneous flap harvest using oral cancer ablation procedures, and additional important risks with the pitfalls of DPAF were emphasized. This article will be helpful, particularly for young doctors during the special curriculum periods for the Korean National Board of Specialists in the field of oral and maxillofacial surgery, plastic surgery, otolaryngology, orthopedic surgery, etc.

The Effects of Convergent Stimulation on tDCS during Mirror Therapy to Improve the Muscle Strength and Gait Ability in Chronic Stroke Patients (만성 뇌졸중 환자에서 거울 치료 시 tDCS의 융합 자극이 다리근력 및 보행능력에 미치는 효과)

  • Lee, Seung-Tae;Kim, Kyung-Yoon
    • Journal of Industrial Convergence
    • /
    • v.18 no.4
    • /
    • pp.51-59
    • /
    • 2020
  • The purpose of this study was to investigate the improvement of muscle strength and gait ability of paralyzed lower extremity through convergent stimulation of tDCS(transcranial direct current stimulation) during mirror therapy with resistance exercise in chronic stroke patients. 12 patients with stroke were randomly assigned and divided into groupI(n=6) and groupII(n=6). GroupI provided NDT(neurodevelopmental treatment) and mirror therapy with sham tDCS, and groupII provided NDT and mirror therapy with tDCS. Each convergent stimulation was conducted 5 times a week, 30 minutes per session for a total of 4 weeks. All evaluation was conducted before intervention and performed after 4 weeks. Lower extremity strength showed a significant improvement in groupII compared to groupI(p<.05), and in comparison between groups by variance, significant difference in the quadriceps(p<.01) and tibialis anterior(p<.01). Gait ability showed a significant improvement in both groupI(p<.05) and groupII(p<.05), and significant difference in comparison between groups by variance(p<.01). In conclusion, mirror therapy with tDCS convergent stimulation had a positive improvement effect on paralyzed lower extremity to strength and gait ability through the overlapping interaction.

The Changes of Electrolytes Composition in Skeletal Muscles by Food Restriction and Rehabilitation (식이 섭취량의 제한과 회복으로 인한 골격근육내 성분변화)

  • Lee, Jae-Hoon;Kim, Sook-He
    • Journal of Nutrition and Health
    • /
    • v.14 no.4
    • /
    • pp.162-174
    • /
    • 1981
  • Fiftysix male weanling rats of the Sprague-Dawley strain weighing $52.6{\pm} 0.9g$ were fed with 77% starch-15% casein diet by ad libitum for four days to get them adapted and divided into eight groups. For three weeks, the body weight gain of rats was controlled in three different ranges. After the period of food restriction, the rats were recovered by being fed by ad libitum for seventeen days. During the experimental period, the amount of food intake and body weight were measured. And the experimental groups were compared when they reached at the same age and at the same body weight. Anterior Tibialis, Extensor Digitorum Longus, Soleus, Plantaris, Gastrocnemius were used as analytic items of skeletal muscle. Wet weight of muscle, muscle protein, water content were measured from each of five skeletal muscles. Sodium, potassium, magnesium content were measured from Anterior Tibialis, Extensor Digitorum Longus, Soleus ana Plantaris. Phosphorus was measured only from Gastrocnemius. The whole carcass protein except the skeletal muscles was also measured. During the period of food restriction, food intake was $311.7{\pm}19.5g$ for the control group. $130.2{\pm}1.5g$ for the second group and $161.7{\pm}2.1g$ for the third group. During the period of food restriction, body weight gain was $106.8{\pm}12.7g$ for the control group, $3.6{\pm}2.1g$ for the second group and $18.9{\pm}3.3g$ for the third group. Comparing the body weight when they reached at the age 66 days, the control group showed higher value than the other groups. In the concentration of electrolytes of skeletal muscles sodium and magnesium tend to increase and potassium and phosphorus tend to decrease by food restriction. But after their recovery, there was no significant difference between the groups. By the degree of food restriction, there was time difference in reaching at the same body weight. But when they reached at the same body weight, there was no significant difference in the value of electrolytes concentration. Regarding all the results of this study, the ages of rats which reached the same body weight were different by food restriction level during weanling. Once food·restricted rats reached the same body weight by recovery, the concentration of electrolytes and protein tend to become almost the same.

  • PDF

The Effects of Speed Variations in Treadmill Training on Thickness of Lower Extremity Muscles (속도가 다른 트레드밀 훈련이 다리 근두께에 미치는 영향)

  • Park, Chi-Bok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.363-370
    • /
    • 2016
  • The purpose of this study was to determine the effects of speed variations in treadmill training on the thickness of lower extremity muscles. A total of 36 university students were divided into three groups: MVTG (n=12), HVTG (n=12), and ATG (n=12). Subjects in MVTG underwent treadmill training with their own average speed; those in HVTG underwent treadmill training with 130% speed of their own average speed; and those in ATG underwent treadmill training with alteration of speed, between 100% and 130% of their own average speed. Treadmill training was performed for 60 minutes a day, three times per week, for a total of 6 weeks. Ultrasonography was used to compare the muscle thickness between rectus femoris, vastus lateralis, gastrocnemius, and tibialis anterior. The result was as follows: The rectus femoris, vastus lateralis, and gastrocnemius were significantly increased after the training period, and they also were statistically significant in interaction. Moreover, tibialis anterior was also significantly increased. Therefore, compared to the average-speed treadmill training, speed variations had a greater effect on thickening the lower extremity muscles. In the near future, we will conduct a study applying the findings from this study in a rehabilitation program for patients with gait disturbance due to nervous or musculoskeletal system disease.

Electromyographic Activities of Lower Leg Muscles During Static Balance Control in Normal Adults (정상성인에서 정적 균형 제어 시 다양한 조건에 따른 하퇴 근육 활성도의 특성)

  • Woo, Young-Keun;Park, Ji-Won;Choi, Jong-Duk;Hwang, Ji-Hye;Kim, Yun-Hee
    • Physical Therapy Korea
    • /
    • v.11 no.2
    • /
    • pp.35-45
    • /
    • 2004
  • The purpose of this study was to investigate the correlation and characteristics between electromyographic (EMG) activities of lower leg muscles and the posturographic assessment of static balance control in normal adults. Twenty-four young, healthy adults(12 males, 12 females) participated in the study. Center of pressure (COP) parameters were obtained using force platform as total path distance, total sway area, X mean frequency and Y mean frequency for 20 seconds in the following conditions: (1) comfortable standing with eyes opened or closed, (2) uncomfortable standing (feet together) with eyes opened or closed, (3) virtual moving surround delivered using Head mount display (HMD) with four different moving patterns. The virtual moving patterns consisted of close-far, superior-inferior tilting (pitch), right-left tilting (roll), and horizontal rotation (yaw) movements. Surface electromyographic activites were recorded on the tibialis anterior, peroneus longus, medial and lateral heads of gastrocnemius muscles under each condition. Correlation between the posturographic measures and EMG activities were evaluated. Total path distance and total sway area of COP were significantly increased during uncomfortable standing. EMG activity of tibialis anterior was significantly more during uncomfortable standing and virtual moving surround stimulation than during comfortable standing. Total path distance and sway area of COP during comfortable standing with closed eyes showed significant positive correlation with the EMG activities of the lateral head of gastrocnemius muscle. Total path distances and total sway area of COP during muscle. Total path distances and total sway area of COP during presentation of virtual moving surround also had significant positive correlations with EMG activities of the lateral head of gastrocnemius muscle under close-far movement.

  • PDF

Effect of Tiger Step on Lower Extremities during Uphill Walking (오르막보행 시 타이거스텝 하지 움직임에 미치는 영향)

  • Kang, Jihyuk;Yoon, Sukhoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.32 no.1
    • /
    • pp.17-23
    • /
    • 2022
  • Objective: The aim of this study was to investigate the effect Tiger-step walking on the movement of the lower extremities during walking. Method: Twenty healthy male adults who had no experience of musculoskeletal injuries on lower extremities in the last six months (age: 26.85 ± 3.28 yrs, height: 174.6 ± 3.72 cm, weight: 73.65 ± 7.48 kg) participated in this study. In this study, 7-segments whole-body model (pelvis, both side of thigh, shank and foot) was used and 29 reflective markers and cluster were attached to the body to identify the segments during the gait. A 3-dimensional motion analysis with 8 infrared cameras and 7 channeled EMG was performed to find the effect of tigerstep on uphill walking. To verify the tigerstep effect, a one-way ANOVA with a repeated measure was used and the statistical significance level was set at α=.05. Results: Firstly, Both Tiger-steps showed a significant increase in stance time and stride length compared with normal walking (p<.05), while both Tiger-steps shown significantly reduced cadence compared to normal walking (p<.05). Secondly, both Tiger-steps revealed significantly increased in hip and ankle joint range of motion compared with normal walking at all planes (p<.05). On the other hand, both Tiger-steps showed significantly increased knee joint range of motion compared with normal walking at the frontal and transverse planes (p<.05). Lastly, Gluteus maximus, biceps femoris, medial gastrocnemius, tibialis anterior of both tiger-step revealed significantly increased muscle activation compared with normal walking in gait cycle and stance phase (p<.05). On the other hand, in swing phase, the muscle activity of the vastus medialis, biceps femoris, tibialis anterior of both tiger-step significantly increased compared with those of normal walking (p <.05). Conclusion: As a result of this study, Tiger step revealed increased in 3d range of motion of lower extremity joints as well as the muscle activities associated with range of motion. These findings were evaluated as an increase in stride length, which is essential for efficient walking. Therefore, the finding of this study prove the effectiveness of the tiger step when walking uphill, and it is thought that it will help develop a more efficient tiger step in the future, which has not been scientifically proven.