• Title/Summary/Keyword: tibialis anterior muscle

Search Result 366, Processing Time 0.028 seconds

The Immediate Effects of External Kinesio-tape Wrapping for Inner Arch Support on the Lower Leg EMG for Gait in Stiletto Heels

  • Yi, Kyungock
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.1
    • /
    • pp.127-133
    • /
    • 2016
  • Purpose: The purpose of this study was to analyze the effects of using external kinesio-tape wrapping for inner arch support on the lower extremity EMG for gait in stiletto heels. Methods: Subjects for this study were two female college students who had been wearing stiletto heels almost every day of the week for more than three years. The independent variable was the presence or absence of kinesio-tape wrap for inner arch support. Dependent variables were EMG readings for the four muscle groups: the medial and lateral gastrocnemius, the tibialis anterior, and the peroneus longus. EMG readings were taken using the NORAXON (USA). The Paired t-test within the subject repeated measure design for the presence and absence of inner arch support (p<0.05) was used via SPSS 18.0. Results: With kinesio-tape wrap for inner arch support, there was a statistically significant decrease in the muscle force mean values for the peroneus longus and the medial and lateral gastrocnemius, in the maximum muscle forces of the peroneus longus and the lateral gastrocnemius. Conclusion: External kinesio-tape wrapping for inner arch support in stiletto heels could have an effect to reduce peroneus longus, and medial/lateral gastrocnemius activities that could result in decreased fatigue and discomfort.

Effects of Vibration Rolling on Ankle Range of Motion and Ankle Muscle Stiffness in Stroke Patients: A Randomized Crossover Study

  • Park, Seju;Jeong, Hojin;Kim, Byeonggeun
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.12 no.1
    • /
    • pp.2272-2278
    • /
    • 2021
  • Background: Vibration stimulation has emerged as a treatment tool to help reduce spasticity during physical therapy. Spasticity includes problems of reduced range of motion (ROM) and stiffness. However, the benefits of vibration rolling (VR) on interventions for stroke patients are unclear. Objectives: This study aimed to investigate the effect of VR intervention on the ankle ROM and ankle stiffness in stroke patients. Design: A randomized crossover study. Methods: Seven stroke patients completed two test sessions (one VR and one non-VR [NVR]) in a randomized order, with 48 hours of rest between each session. Participants completed intervention and its measurements on the same day. The measurements included ankle dorsiflexion and plantarflexion ROM and stiffness of ankle muscles, including the tibialis anterior, medial, and lateral gastrocnemius muscle. Results: After VR, ankle dorsiflexion ROM, lateral gastrocnemius stiffness, and medial gastrocnemius stiffness improved significantly (all P<.05). After NVR, only the lateral gastrocnemius stiffness improved significantly (P<.05). Furthermore, in the cases of changed values for ankle dorsiflexion ROM and lateral gastrocnemius stiffness were compared within groups, VR showed a more significant difference than NVR (P<.05) Conclusion: VR improved ankle ROM and muscle stiffness. Therefore, we suggest that practitioners need to consider VR as an intervention to improve dorsiflexion ROM and gastrocnemius stiffness in stroke patients.

The Effect on Muscle Activation in the Trunk and Lower Limbs While Squatting with Slope-whole-body Vibration (스쿼트 동작 시 경사기능전신진동기의 적용이 몸통 및 하지 근 활성도에 미치는 영향)

  • Oh, Ju-Hwan;Kang, Seung-Rok;Kwon, Tae-Kyu;Min, Jin-Young
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.4
    • /
    • pp.383-391
    • /
    • 2015
  • Objective : The purpose of this study was to investigate the effects of dynamic squats with slope-whole body vibration (WBV) on the trunk and lower limb in muscle activities. Method : 9 healthy women (age: $21.1{\pm}0.6years$, height: $160.5{\pm}1.4cm$, body weight: $50.5{\pm}2.4kg$) were recruited for this study. Muscle activities in the trunk and lower limb muscles, including biceps femoris (BF), rectus femoris (RF), rectus abdominum (RA), gastrocnemius (GCM), iliocostalis lumborum (IL) and tibialis anterior (TA), were recorded using an EMG measurement system. The test was performed by conducting dynamic squats with slope-WBV using frequency (10Hz, 50Hz), amplitude (0.5mm), and degree ($0^{\circ}$, $5^{\circ}$). Experimental method consisted of 2-pre-sessions and 1-test-session for 20 seconds. Results : The results showed that the muscle activities of the trunk and low limb muscles increased significantly with the $5^{\circ}$ slope and lower frequency (10Hz) except for in the TA. From this result, we confirmed that the slope and WBV could efficiently affect stimulation, enhancing muscle activities by facilitating neural control trail and muscle chain tightness. Conclusion : Utilizing the slope-WBV device while squatting could give positive effects on muscle activation in the trunk and lower limb muscles and provide neural stimulation, enhancing muscle chain of control subsystem through TVR (tonic vibration reflex).

Comparison the Muscle Activation in the Trunk and Lower Limbs of Subjects Wearing High-Heeled or Flat Shoes While Crossing Over Obstacles of Different Heights

  • Park, Jin-Seong;Han, Jin-Tae
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.12 no.3
    • /
    • pp.85-91
    • /
    • 2017
  • PURPOSE: The purpose of this study was to compare muscle activation of the trunk and lower limbs of subjects wearing high-heeled or flat shoes while crossing over obstacles of different heights. METHODS: Twenty subjects participated in this study. While wearing high-heeled shoes (7 cm) or flat shoes (0 cm), the subjects were asked to cross over obstacles of different heights (10%, 20%, and 30% of their lower-limb length). Muscle activation of the trunk and lower limbs with the supported side while crossing over obstacles of different heights was measured using the electromyogram (Noraxon, DTS, Germany). Two-way repeated ANOVA was used to compare the muscle activation between high-heel shoes and flat shoes while crossing over obstacles of different heights. All statistical analyses were performed using SPSS ver. 21, and p-values less than .05 were used to identify significant differences. RESULTS: As an obstacle's height increased, muscle activation of the trunk and lower limbs with the supported side was increased while wearing either type of shoe, and it was generally higher while wearing high-heeled shoes. However, tibialis anterior muscle activity while wearing high-heeled shoes was lower than while wearing flat shoes. CONCLUSION: This study showed that muscle activation of the trunk and lower limbs was higher when subjects wore high-heeled shoes than when they wore flat shoes while crossing over obstacles of different heights. Therefore, high-heeled shoes can easily cause high muscle fatigue of the trunk and lower limbs, and the TA muscle may weaken in persons who wear high-heeled shoes.

Characteristics of Muscle Activity in the Lower Extremity during Stepping over Various Obstacle

  • Lee, Han-Suk;Hong, Seung-Beom;Chin, Ha-Nul;Choi, Ju-Li;Seon, Hee-Chang;Jeong, Duk-Young
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.14 no.4
    • /
    • pp.55-62
    • /
    • 2019
  • PURPOSE: This study examined the muscle activity while stepping over obstacles with various heights and widths to provide basic data for training and preventing falls. METHODS: Fifteen normal young adults (seven males and eight females) were recruited. The participants walked on a 5m walkway with six obstacles. The heights of obstacles were 0%, 10%, and 40% of the subject's leg length, and the width of the obstacles was 7cm and 14cm. The participants traversed the course twice per obstacle. The muscle activities of the soleus, tibialis anterior (TA), vastus medialis (VM), and vastus lateralis (VL) were measured using surface electromyography. A Mann-Whitney test and Kruskal-Wallis test were used to examine the differences between obstacles. RESULTS: The muscle activities of the VL and the soleus of the stance leg and lead leg after crossing over the obstacles increased with increasing width, and there were significant differences in muscle activities between obstacle width (p<.05) except for the muscle activity of TA of the stance leg after crossing over the obstacles. A significant difference in muscle activities was observed according to the height of the obstacles with 14 cm (p<.05) except for the muscle activity of the VL, soleus of the leading leg, and TA of the stance leg CONCLUSION: The role of the VL and Soleus increased with increasing obstacle width, and the overall muscle activities of the lower extremities increased with increasing obstacle height. These results can be used to suggest a program to prevent falls.

Multimodal Imaging of Sarcopenia using Optical Coherence Tomography and Ultrasound in Rat Model

  • Jeon, Byeong Hwan;Chae, Yu-Gyeong;Hwang, Sang Seok;Kim, Dong Kyu;Oak, Chulho;Park, Eun-Kee;Ahn, Yeh-Chan
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.55-59
    • /
    • 2014
  • Sarcopenia, or reduced muscle mass and volume, is due to various factors such as senile change, neuronal degeneration, drug, malignancy, and sepsis. Sarcopenia with the aging process has been evidenced by the decline in muscle mass by 0.5 to 1% per year with 3-5% reduction in muscle strength for 10 years between the ages of 40 and 50, and a 1-2% of decline of mass every year in people aged 60-70. Therefore, early diagnosis and understanding the mechanism of sarcopenia are crucial in the prevention of muscle loss. However, it is still difficult to image changes of muscle microstructure due to a lack of techniques. In this study, we developed an animal model using denervated rats to induce a rapid atrophy in the tibialis anterior (TA) and imaged its structural changes using optical coherence tomography (OCT) along with histologic and ultrasound analyses. Ultrasound showed changes of overall muscle size. Histology revealed that the atrophic TA muscle displayed an increased size variability of muscle fiber and inflammatory changes. Three dimensional OCT imaged the changes of perimysial grid and muscle fiber structure in real time without sacrifice. These observed advantages of multimodal imaging using OCT and ultrasound would provide clinical benefits in the diagnosis of sarcopenia.

The Effects of Dual Task Performance on Balance and Muscle Activity in Adults with Ankle Instability with Smartphones (스마트폰을 이용한 이중과제 수행이 발목 불안정성을 가진 성인의 균형과 근 활성도에 미치는 영향)

  • Min-Kyu Kim;Hoe-Song Yang;Young-Dae Yoo;Hyo-Jeong Kang;Chan-Joo Jeong
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.1
    • /
    • pp.21-29
    • /
    • 2023
  • Purpose : Using a smartphone while walking districts attention and increases the risk of losing balance or falling. Ankle instability is caused by decreased muscle strength and decreased neuromuscular ability leading to postural control problems. Dual tasks increases the risk of falls by reducing postural control in adults with ankle instability. This study aimed to investigate the effect of performing a dual task on balance and muscle activity in adults with ankle instability using a smartphone. Methods : Forty-nine individuals with ankle instability participated in this study. A game of finding the wrong picture was performed using a smartphone in the dual task, and only looking at the blank screen of a smartphone was evaluated in the single task. The participants randomly performed single and dual task to evalutate balance and muscle atcitivy. Balance was evaluated using the Biodex balance system (BBS), and muscle activity was evaluated using surface EMG. Muscle activity of the gastrocnemius and tibialis anterior was measured at the same time as balance. Results : The results of this study showed that overall, anteior/posterior, and medial/lateral balance indices all showed significant differences when performing the dual task compared with those during the single task (p<.05). The muscle activity results showed a significant difference compared with that of the gastronemius muscle on the nondominant side during the dual task (p>.05). Conclusion : The results of this study showed that maintaining balance is more difficult when performing the dual task than during the single task, and only the muscle activity of the nondominant gastrocnemius muscle decreased. The dual task causes a decrease in concentration for postural control, which negatively affects postural stability. Individuals with ankle ankle instability should refrain from performing dual tasks, such as using smartphones, to prevent ankle damage.

Effects on Threshold Change of Motor Nerve under Controlled Sensory Stimulation (조절된 감각자극이 운동신경의 역치변화에 미치는 효과)

  • Min, Kyung-Ok;Kim, Soon-Hee
    • Journal of Korean Physical Therapy Science
    • /
    • v.2 no.3
    • /
    • pp.599-608
    • /
    • 1995
  • If a controlled sensory stimulation is given to the specific receptors, a reflex movement and motor engrams is achieved by the principle of neurophysiology. Based on this theoretical background, we choose 80 healthy person(male 40,female 40) and compare chronaxie of before stimulation with after stimulation. Also we measured chronaxie with same method. Stimulation was applied to the muscle belly by tapping. The results are summarized as follows; 1. The mean value of rheobase measured from the proximal part of upper extremity is 3. 56mA for male, 4.04mA for female. 2. The mean value of rheobase measured from the lower extremity is 4.19mA for male, 4. 37mA for female, which is higher than that of upper extremity for both male and female. 3. The mean value of chronaxie from the proximal part of upper extremity is 0.91msec for male, 0.87 msec for female, which means male is higher than female, and the average is 0.82msec. 4. The mean value of chronaxie from the proximal part of lower extremity is 1.04msec for male, 1.14msec for female, which means female is higher than male. 5. The decrease of rheobase after stimulation is prominent at the triceps brachii for male, biceps brachii for female. 6. The decrease of rheobase after stimulation is prominent at the tibialis anterior for both male and female. 7. The decrease of chronaxie after stimulation is prominent for both male and female at the triceps brachii from upper extremity and at the tibialis anterior from lower extremity for both male and female.

  • PDF

Effects of Hoehn-Yahr Scale on the Activation of Lower-Extremity Muscles during Walking with Parkinson's Patients (파킨슨 환자들의 질병등급척도가 보행 시 하지의 근육활동에 미치는 영향)

  • Kim, Chang-Hwan;Kim, Mi-Young;Moon, Je-Heon;Lim, Bee-Oh
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.3
    • /
    • pp.287-293
    • /
    • 2014
  • The purpose of this study was to investigate the effects of Hoehn-Yahr scale on the activation of lower-extremity muscles during walking. Electromyography (EMG) analysis was carried out on 36 patients with Parkinson's disease in the off phase of the medication cycle. We recorded EMG signals of the tibialis anterior (TA), medial gastrocnemius (MG), lateral gastrocnemius (LG), soleus (SOL), rectus femoris (RF), vastus lateralis (VL), semitendinosus (ST) and biceps femoris (BF) using Noraxon 16 channels EMG system during walking at preferred speed. Rectified EMG signals were normalized to reference voluntary contractions (RVC) over a gait cycle at the preferred speed, allowing for an assessment of how the activity was distributed over the gait cycle. Compared to the H & Y Scale 1, H & Y Scale 3 exhibited greater activation of the vastus lateralis during mid-stance and greater activation of the medial gastrocnemius during terminal swing. Compared to the H & Y Scale 1, H & Y Scale 2 and 3 exhibited less activation of the tibialis anterior during initial swing. We conclude that the more Hoen & Yahr Scale increase, the more abnormal lower-extremity muscles activation.

Concurrent treatment with ursolic acid and low-intensity treadmill exercise improves muscle atrophy and related outcomes in rats

  • Kim, Jae Cheol;Kang, Yun Seok;Noh, Eun Bi;Seo, Baek Woon;Seo, Dae Yun;Park, Gi Duck;Kim, Sang Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.4
    • /
    • pp.427-436
    • /
    • 2018
  • The objective of this study was to analyze the concurrent treatment effects of ursolic acid (UA) and low-intensity treadmill exercise and to confirm the effectiveness of UA as an exercise mimetic to safely improve muscle atrophy-related diseases using Sprague-Dawley (SD) rats with skeletal muscle atrophy. Significant muscle atrophy was induced in male SD rats through hind limb immobilization using casting for 10 days. The muscle atrophy-induced SD rats were group into four: SED, sedentary; UA, daily intraperitoneal UA injection, 5 mg/kg; EX, low-intensity (10-12 m/min, $0^{\circ}$ grade) treadmill exercise; and UEX, daily intraperitoneal UA injection, 5 mg/kg, and low-intensity (10-12 m/min, $0^{\circ}$ grade) treadmill exercise. After 8 weeks of treatment, endurance capacity was analyzed using a treadmill, and tissues were extracted for analysis of visceral fat mass, body weight, muscle mass, expression of muscle atrophy- and hypertrophy-related genes, and endurance capacity. Although the effects of body weight gain control, muscle mass increase, and endurance capacity improvement were inadequate in the UA group, significant results were confirmed in the UEX group. The UEX group had significantly reduced body weight and visceral fat, significantly improved mass of tibialis anterior and gastrocnemius muscles, and significantly decreased atrophy-related gene expression of MuRF1 and atrogin-1, but did not have significant change in hypertrophy-related gene expression of Akt and mTOR. The endurance capacity was significantly improved in the EX and UEX groups. These data suggest that concurrent treatment with low-intensity exercise and UA is effective for atrophy-related physical dysfunctions.