• 제목/요약/키워드: tialite

검색결과 4건 처리시간 0.018초

크롬을 사용한 Tialite계 안료 (Cr-doped Tialite Pigments)

  • 김연주;이병하
    • 한국재료학회지
    • /
    • 제21권9호
    • /
    • pp.515-519
    • /
    • 2011
  • The purpose of this study was to determine the optimal firing condition and composition for $Al_2TiO_5$ crystal, which is suitable for stable coloration in glazes at high temperatures, using $Cr_2O_3$ as chromophore for the synthesis of $Al_2TiO_5$ system pigments. $Al_2TiO_5$ has a high refractive index and good solubility of chromophore in the $Al_2TiO_5$ lattice, making this structure a good candidate for the development of new ceramic pigments. Pigments were synthesized by using $Al_2O_3$ and $TiO_2$ mainly. Various amounts of $Cr_2O_3$ such as 0.01, 0.02, 0.03, 0.04 and 0.05 mole were also added. Each compound was synthesized at $1300^{\circ}C$, $1400^{\circ}C$, and $1500^{\circ}C$ for 2 hours and cooled naturally. The crystal structure, solubility limit, and color of the synthesized pigments were analyzed by XRD, SEM, Raman spectroscopy, UV and UV-vis. The changes in color as the result of applying 6 wt% of the synthesized pigments to lime barium glaze were expressed as CIE-L*a*b* values. A $Cr_2O_3$ 0.03 mole doped $Al_2TiO_5$ brown pigment was successfully synthesize at $1400^{\circ}C$, and the values of CIE-L*a*b* parameters were L* = 44.62, a* = 3.10, and b* = 17.25. In the case of the pigment synthesized at $1500^{\circ}C$, the brown color was obtained at 0.01 mole and 0.02 mole $Cr_2O_3$, and the CIE-L*a*b* values were 55.34, 1.73, 28.64, and 49.39, 0.51, 21.33, respectively. At $1500^{\circ}C$, the maximum limit of solid solution was 0.03 mole $Cr_2O_3$. The glazed sample showed green color, and the values of the CIEL* a*b* parameters were L* = 45.69, a* = -0.98, and b* = 20.38.

Tialite계 세라믹 안료의 합성 및 유약에서의 발색 (Synthesis of Tialite Ceramic Pigments and Coloring in Glazes)

  • 김연주;이병하
    • 한국재료학회지
    • /
    • 제21권8호
    • /
    • pp.450-455
    • /
    • 2011
  • [ $Al_2TiO_5$ ]has a high refractive index and good solubility of the chromophore in the $Al_2TiO_5$ lattice, which allows this structure to be a good candidate for the development of new ceramic pigments. However, pure $Al_2TiO_5$ is well known to decompose on firing at $900{\sim}1100^{\circ}C$. However, this process can be inhibited by the incorporation of certain metal cations into its crystalline lattice. In this study, the synthesis of gray ceramic pigment was performed by doping cobalt on the $Al_2TiO_5$ crystal structure. The $Al_2TiO_5$ was synthesized using $Al_2O_3$ and $TiO_2$, and doped with $Co_3O_4$ as a chromophore material. In order to prevent the thermal decomposition during the cooling procedure, MgO was added to samples by 0.05 mole, 0.1 mole, and 0.15 mole as a stabilizer. The samples were fired at $1500^{\circ}C$ for 2 hours and cooled naturally. The crystal structure, solubility limit, and color of the synthesized pigment were analyzed using XRD, Raman spectroscopy, UV, and UV-vis. $Al_2O_3$ was available for the formation of $CoAl_2O_4$, which should also be considered in order to explain the small amount of this phase detected in the sample with the higher $Co^{2+}$ content (${\geq}$ 0.03 mole). It was found that the solubility limit of $Co^{2+}$ in the $Al_2TiO_5$ crystal was 0.02 mole% through an analysis of Raman spectroscopy. Through the addition of a pigment with 0.02 mole% of $Co^{2+}$ to lime-barium glaze, stabilized gray color pigments with 66.54, -2.35, and 4.68 as CIE-$L^*a^*b^*$ were synthesized.

Effect of Grain Size on the Thermomechanical Properties of $Al_2 TiO_5$ Ceramics

  • Kim, Ik-Jin;Kweon, Oh-Seong;Ko, Young-Shin;Constatin Zografou
    • The Korean Journal of Ceramics
    • /
    • 제2권4호
    • /
    • pp.246-250
    • /
    • 1996
  • The thermomechanical properties of materials from the system Al2O3-SiO2-TiO2(Tialite-Mullite) were investigated by correlating the thermal expansion anisotroypy, flexural strength and Young's modulus with grain size and atructural microcracking during cooling. Microcracking temperatures were determined by measuring the hysteresis of the thermal expansion anisotropy with dilatometry. Single phase Aluminium Titanate is a low strength material, while composites with more than 10 vol% mullite as second phase enhance the Young's modulus, thermal expansion coefficient and room temperature strength.

  • PDF

비정질 $TiO_2$$\alpha-AL_2O_3$부터 $AL_2TiO_5$를 합성하기 위한 고체상태 반응속도 (Solid-state reaction kinetics for the formation of aluminium titanate ($AL_2TiO_5$) from amorphous $TiO_2$ and $\alpha-AL_2O_3$)

  • Ik Jin Kim;Oh Seong Kweon;Young Shin Ko;Constantin Zografou
    • 한국결정성장학회지
    • /
    • 제7권2호
    • /
    • pp.259-270
    • /
    • 1997
  • $\alpha-Al_2O_3$와 비정질 $TiO_2$부터 $Al_2TiO_5$를 합성하기 위한 고체상태반응의 반응속도를 $1200~1300^{\circ}C$ 온도 범위에서 연구하였다. 반응속도는 $Al_2O_3$분말을 코팅한 50 mol%의. $TiO_2$와 일정한 온도에서 여러 시간동안 가열하여 생성된 혼합물에 의하여 결정되었다. MgO안의 반응물과 미반응물의 양은 X-선 회절분석에 의하여 결정되었다. $Al_2TiO_5$의 부피율과 peak intensity비의 자료로부터 $Al_2O_3$$TiO_2$의 pseudobrookite(Tialite)형태로의 반응은 $1280^{\circ}C$$1300^{\circ}C$ 사이에서 시작되었다. 고체상태반응 활성화 에너지는 Arrhenius식에 의하여 결정되었다. 활성화 에너지는 622.4 kJ/mol이다.

  • PDF