• Title/Summary/Keyword: thymine dimer

Search Result 4, Processing Time 0.018 seconds

Study on the Structure of DNA Containing a Thymine Dimer and $T_4$ Endonuclense V * DNA Complex (Thymine Dimer를 포함한 DNA와 $T_4$ Endonuclease V * DNA 복합체의 구조에 관한 연구)

  • 이봉진;유준석;임형미
    • Biomolecules & Therapeutics
    • /
    • v.2 no.1
    • /
    • pp.28-33
    • /
    • 1994
  • In order to obtain insight into the repair mechanism of DNA containing thymine photo-dimer, the conformation of the duplex d(GCGGTTGGCG).d(CGCCAACCGC) with a thymine dimer incorporated has been studied by proton NMR. NOE data show that, although the local environment around the thymine dimer is altered, the gross structural changes are relatively small. T$_4$endonuclease V exhibited a conformational change on complex formation with DNA. This conformational change occurred around histidine 16 which was close to tyrosine 129 located in the aromatic segment (WYKYY) near the C-terminus. It is likely that the interaction between T$_4$endonuclease V and DNA is strong since the complex was not dissociated up to 1.6 M NaCl.

  • PDF

NMR study of the interaction of T$_4$ Endonuclease V with DNA

  • 이봉진;유준석;임형미;임후강
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.267-267
    • /
    • 1994
  • In order to obtain insight into the mechanism by which DNA containing a thymine photo-dimer is recognized by the excision repair enzyme, T$_4$ endonuclease V, we have taken NMR study of this protein and its complex with oligonucleotides. The conformations of five different DNA duplexes DNA I : d(GCGGATGGCG).d(CGCCTACCGC), DNA II d(GCGGTTGGCG) .d(CGCCAACCGC), DNA III : d(GCGGT ^ TGGCG) .d(CGCCAACCGC), DNA IV d(GCGGGCGGCG).d(CGCCCGCCGC) and DNA V d(GCGGCCGGCG) . d(CGCCGGCCGC) were studied by $^1$H NMR. The NMR spectra of these five DNA duplexes in the absence of the enzyme clearly show that the formation of a thymine dimer within the DNA induces only a minor distortion in the structure, and that the overall structure of B type DNA is retained. The photo-dimer formation is found to cause a large change in chemical shifts at the GC7 base pair, which is located at the 3'-side of the thymine dimer, accompanied by the major conformational change at the thymine dimer site. The binding of a mutant T$_4$ endonuclease V (E23Q), which is unable to digest DNA containing a thymine dimer, to the DNA duplex d(GCGGT ^ TGGCG)ㆍd(CGCCAACCGC) causes a large down-field shift in the imino proton resonance of GC7. Therefore, this position is thought to be either the crucial point of the interaction wi th T$_4$ endonuclease V, or the si to of a conformational change in the DNA caused by the binding of T$_4$ endonuclease V. Usually, it is very difficult to assign NMR peaks in DNA * protein complex because of severe peak overlaps. In order to overcome these peak overlaps, we used a method of deuterium incorporation.

  • PDF

Extract of Ettlia sp. YC001 Exerts Photoprotective Effects against UVB Irradiation in Normal Human Dermal Fibroblasts

  • Lee, Jeong-Ju;An, Sungkwan;Kim, Ki Bbeum;Heo, Jina;Cho, Dae-Hyun;Oh, Hee-Mock;Kim, Hee-Sik;Bae, Seunghee
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.4
    • /
    • pp.775-783
    • /
    • 2016
  • The identification of novel reagents that exert a biological ultraviolet (UV)-protective effect in skin cells represents an important strategy for preventing UV-induced skin aging. To this end, we investigated the potential protective effects of Ettlia sp. YC001 extracts against UV-induced cellular damage in normal human dermal fibroblasts (NHDFs). We generated four different extracts from Ettlia sp. YC001, and found that they exhibit low cytotoxicity in NHDFs. The ethyl acetate extract of Ettlia sp. YC001 markedly decreased UVB-induced cytotoxicity. Additionally, the ethyl acetate extract significantly inhibited the production of hydrogen peroxide-induced reactive oxygen species. Moreover, it inhibited UVB-induced thymine dimers, as confirmed by luciferase assay and thymine dimer dot-blot assay. Thus, the study findings suggest Ettlia sp. YC001 extract as a novel photoprotective reagent on UVB-induced cell dysfunctions in NHDFs.

Impacts of Ultraviolet-B Radiation on Rice-Field Cyanobacteria

  • Sinha, Rajeshwar P.;Hader, Donat-P.
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.439-441
    • /
    • 2002
  • Cyanobacteria are the dominant micro flora in rice-fields, contributing significantly to fertility as a natural biofertilizer. Recent studies show a continuous depletion of the stratospheric ozone layer, and the consequent increase in solar UV-B (280-315 nm) radiation reaching the Earth's surface. UV-B radiation causes reduction in growth, survival, protein content, heterocyst frequency and fixation of carbon and nitrogen in many cyanobacteria. UV -B induced bleaching of pigments, disassembly of phycobilisomal complexes, thymine dimer formation and alterations in membrane permeability have also been encounterd in a number of cyanobacteria. However, certain cyanobacteria produce photoprotective compounds such as water soluble colorless mycosporine-like amino acids (MAAs) and the lipid soluble yellow-brown colored sheath pigment, scytonemin, to counteract the damaging effects of UV-B. Cyanobacteria, such as Anabaena sp., Nostoc commune, Scytonema sp. and Lyngbya sp. were isolated from rice fields and other habitats in India and screened for the presence of photoprotective compounds. A circadian induction of the synthesis of MAAs by UV -B was noted in a number of cyanobacteria. Polychromatic action spectra for the induction of MAAs in Anabaena sp. and Nostoc commune also show the induction to be UV-B dependent peaking at 290 nm. Another photoprotective compound, scytonemin, with an absorption maximum at 386 nm (also absorbs at 300, 278, 252 and 212 nm), was detected in many cyanobacteria. In conclusion, a particular cyanobacterium having photoprotective compounds may be a potent candidate as biofertilizer for crop plants.

  • PDF