• Title/Summary/Keyword: thymidine

Search Result 418, Processing Time 0.024 seconds

THE EFFECT OF TENSILE FORCE ON DNA AND PROTEIN SYNTHESIS IN BONE CELLS (인장력이 골조직 세포군의 DNA 및 단백합성에 미치는 영향)

  • Kwon, Oh-Sun;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.24 no.4 s.47
    • /
    • pp.933-943
    • /
    • 1994
  • The present study was undertaken to determine the effect of tensile force on DNA and protein biosynthesis in bone cells, and to identify the cell type(s) which primarily respond to external physical force among the heterogenous bone cell populations. As a prerequisite for this study, two bone cell populations which retain fibroblastic and osteoblastic feature were isolated from fetal rat calvaria with sequential enzyme digestion scheme. Tensile force was delivered to each bone cell population by two acrylic resin plates connected with a orthodontic expansion screw during culture period. Rate of DNA and protein synthesis in each bone cell population were assessed by the incorporated radioactivity of $[^3H]-thymidine$ into DNA and $[^3H]-proline$ into fraction of collagenase-digestible protein and noncollagenous protein, respectively. DNA synthesis of osteoblast-like calvarial cell populations was increased significantly by the application of tensile force for 24 hours. In contrast, no alteration in DNA synthesis of fibroblast-like populations could be observed in response to applied force. Tensile force induced the change in protein synthesis of bone cell populations with the same pattern. Total protein and collagen synthesis were increased whithin 24 hours in osteoblast-like populations, but not in fibroblast-like populations by tensile force application. These findings indicate that physical force can affect cellullar activity of the particular cell population, not all cell Populations residing in bone and osteoblasts respond more sensitively than fibroblasts. So osteoblasts can modulate the behavior of other bone cells including osteoclasts by producing several local regulating factors of bone metabolism. In this context, preferential responsiveness of osteoblasts to applied tensile force observed in this study suggests that osteoblasts may play an important role in regulation of physical force-induced remodelling process.

  • PDF

Effects of Low Level Laser on the Proliferation and Gene Expression of Fibroblasts and Immune Cells (저출력레이저조사가 섬유아세포와 면역세포의 증식 및 유전자발현에 미치는 영향)

  • Ik-Jun Lim;Keum-Back Shin;Bok Choi
    • Journal of Oral Medicine and Pain
    • /
    • v.20 no.1
    • /
    • pp.53-65
    • /
    • 1995
  • The growth and synthetic activities of fibroblasts are regulated by cytokines and growth factors derived from activated inflammatory cells. Stimulatory effect of low level laser (LLL) radiation on wound healing seems to be in part due to direct stimulatory action on cell proliferation and synthetic activities of fibroblasts. Also indirect stimulatory effect on the fibroblast function through inflammatory or immune cells is another possible mechanism of biostimulatory action of LLL. This study was performed to determine the growth rate of human gingival fibroblasts obtained biopsy and culture, fibroblast cell line, and immune cell line by using $[^3H]-$ thymidine incorporation test. And gene expression pattern was also analyzed by using the DNA probe such as Hsp70, IL-1$\beta$, MIP-1$\alpha$ and actin cDNA. Proliferation rate of gingival fibroblast was increased by LLL irradiation, but no more effect was added by LPS or IL-1$\beta$ pretreatment Enhanced Hsp70 gene expression was found from gingival fibroblasts and fibroblast cell line COS by LLL irradiation., which was not more increased by LPS or IL-1$\beta$ pretreatment. LLL-irradiated promyelcytic cell line HL-60 and macrophage cell line RAW264.7 showed significant stimulatory effect of proliferation rate when compared with respective control. However there were no changes in growth rate of other immune cell tested in this study, such as B cell line WR19n.l and 230, helper T cell line Jurkat and Hut78, cytolytic T cell line CTLL-r8. By LLL-irradiation Hsp70 gene expression was increased in RAW246.7 and HL-60, not in CTLL-R8. And IL-1$\beta$ and MIP-1$\alpha$ gene expression were induced only from LLL-irradiated RAW264.7. These results led us to presume that LLL radiation may affect to the immune cells, especially to macrophage, through which it might promote wound healing process.

  • PDF

GTP Induces S-phase Cell-cycle Arrest and Inhibits DNA Synthesis in K562 Cells But Not in Normal Human Peripheral Lymphocytes

  • Moosavi, Mohammad Amin;Yazdanparast, Razieh;Lotfi, Abbas
    • BMB Reports
    • /
    • v.39 no.5
    • /
    • pp.492-501
    • /
    • 2006
  • Since differentiation therapy is one of the promising strategies for treatment of leukemia, universal efforts have been focused on finding new differentiating agents. In that respect, we used guanosine 5'-triphosphate (GTP) to study its effects on K562 cell line. GTP, at concentrations between 25-200 ${\mu}M$, inhibited proliferation (3-90%) and induced 5-78% increase in benzidine-positive cells after 6-days of treatments of K562 cells. Flow cytometric analyses of glycophorine A (GPA) showed that GTP can induce expression of this marker in more mature erythroid cells in a time- and dose-dependent manner. These effects of GTP were also accompanied with inhibition of DNA synthesis (measured by [$^3H$]-thymidine incorporation) and early S-phase cell cycle arrest by 96 h of exposure. In contrast, no detectable effects were observed when GTP administered to unstimulated human peripheral blood lymphocytes (PBL). However, GTP induced an increase in proliferation, DNA synthesis and viability of mitogen-stimulated PBL cells. In addition, growth inhibition and differentiating effects of GTP were also induced by its corresponding nucleotides GDP, GMP and guanosine (Guo). In heat-inactivated medium, where rapid degradation of GTP via extracellular nucleotidases is slow, the anti-proliferative and differentiating effects of all type of guanine nucleotides (except Guo) were significantly decreased. Moreover, adenosine, as an inhibitor of Guo transporter system, markedly reduced the GTP effects in K562 cells, suggesting that the extracellulr degradation of GTP or its final conversion to Guo may account for the mechanism of GTP effects. This view is further supported by the fact that GTP and Guo are both capable of impeding the effects of mycophenolic acid. In conclusion, our data will hopefully have important impact on pharmaceutical evaluation of guanine nucleotides for leukemia treatments.

Anti-Cancer Effects and Apoptosis by Korean Medicinal Herbs

  • Ko Seong Gyu;Jun Chan Yong;Park Chong Hyeong;Bae Hyun Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.3
    • /
    • pp.819-825
    • /
    • 2003
  • pharbitis nil and Taraxacum mongolicum are representative herbs that have been used for cancer treatment in Korean traditional medicine. To understand the molecular basis of the antitumor function, we analyzed the effect of these herbs on proliferation and apoptosis of tumor cells using a gastric cancer cell line AGS. Cell counting assay showed that pharbitis nil strongly inhibit cell proliferation Of AGS whereas Taraxacum mongolicum exhibit no detectable effect on cellular growth. [³H]thymidine uptake analysis also demonstrated that DNA replication of AGS is suppressed in a dose-dependent manner by treatment with pharbitis nil. Additionally, tryphan blue exclusion assay showed that Pharbitis nil induce apoptotic cell death of AGS in a dose-dependent. To explore whether anti antiproliferative and/or proapototic property of Pharbitis nil is associated with their effect on gene expression, we performed RT-PCR analysis of cell cycle- and apoptosis-related genes. Interestingly, mRNA expression levels of c-Jun, c-Fos, c-Myc, and Cyclin D1 were markedly reduced by Pharbitis nil. Taraxacum mongolicum also showed inhibitory action on expression of these growth-promoting protooncogene but there effects are less significant, as compared to Pharbitis nil. Furthermore, it was also found that Pharbitis nil activates expression of the p53 tumor suppressor and its downstream effector p21Waf1, which induce G1 cell cycle arrest and apoptosis. Collectively, our data demonstrate that Pharbitis nil induce growth inhibition and apoptosis of human gastric cancer cells and these effects are accompanied with down-and up-regulation of growth-regulating protooncogenes and tumor suppressor genes, respectively. This observation thus suggests that the anticancer effect of Pharbitis nil might be associated with its regulatory capability of tumor-related gene expression.

Genotoxicity of Aluminum Oxide ($Al_2O_3$) Nanoparticle in Mammalian Cell Lines

  • Kim, Youn-Jung;Choi, Han-Saem;Song, Mi-Kyung;Youk, Da-Young;Kim, Ji-Hee;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.2
    • /
    • pp.172-178
    • /
    • 2009
  • Nanoparticles are small-scale substances (<100 nm) with unique properties, complex exposure and health risk implications. Aluminum oxide ($Al_2O_3$) nanoparticles (NP) have been widely used as abrasives, wear-resistant coatings on propeller shafts of ships, to increase the specific impulse per weight of composite propellants used in solid rocket fuel and as drug delivery systems to increase solubility. However, recent studies have shown that nano-sized aluminum (10 nm in diameter) can generate adverse effects, such as pulmonary response. The cytotoxicity and genotoxicity of $Al_2O_3$ NP were investigated using the dye exclusion assay, the comet assay, and the mouse lymphoma thymidine kinase (tk$^{+/-}$) gene mutation assay (MLA). IC$_{20}$ values of $Al_2O_3$ NP in BEAS-2B cells were determined the concentration of 273.44 $\mu$g/mL and 390.63 $\mu$g/mL with and without S-9. However IC$_{20}$ values of $Al_2O_3$ NP were found nontoxic in L5178Y cells both of with and without S-9 fraction. In the comet assay, L5178Y cells and BEAS-2B cells were treated with $Al_2O_3$ NP which significantly increased 2-fold tail moment with and without S-9. Also, the mutant frequencies in the $Al_2O_3$ NP treated L5178Y cells were increased compared to the vehicle controls with S-9. The results of this study indicate that $Al_2O_3$ NP can cause primary DNA damage and cytotoxicity but not mutagenicity in cultured mammalian cells.

Forward Gene Mutation Assay of Seven Benzophenone-type UV Filters using L5178Y Mouse Lymphoma Cell

  • Jeon, Hee-Kyung;Sarma, Sailendra Nath;Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.1
    • /
    • pp.23-30
    • /
    • 2007
  • The effects of high energy short wave solar radiation on human skin have received much publicity as the major cause of accelerated skin ageing and of skin cancers. To meet public demand, the cosmetic industry has developed sun protection factor products, which contain a variety of so-called "UV filters", among others benzophenone (BP) and its metabolites are the widely used UV filters. UV filters are also used to prevent UV light from damaging scents and colors in a variety of cosmetics products and to protect of plastic products against light-induced degradation. There are many variants of BP in use. In this respect, to regulate and to evaluate the hazardous effect of BP-type UV filters will be important to environment and human health. The genotoxicity of 7 BP-type UV filters was evaluated in L5178Y $(tk^{+/-})$ mouse lymphoma cells in vitro. BP, benzhydrol, 4-hydroxybenzophenone 2-hydroxy-4-methoxybenzophenone and 2, 4-dihydroxybenzophenone did not induce significant mutation frequencies both in the presence and absence of metabolic activation system. 2, 2'-Dihydroxy-4-methoxybenzophenone appeared the positive results at the highest dose, i.e. 120.4 ${\mu}g/mL$ only in the absence of metabolic activation system. And also, 2, 3, 4-trihydroxybenzophenone revealed a significant increase of mutation frequencies in the range of 138.1-207.2 ${\mu}g/mL$ in the absence of metabolic activation system and 118.3-354.8 ${\mu}g/mL$ in the presence of metabolic activation system. Through the results of MLA with 7 BP-type UV filters in L5178Y cells in vitro, we may provide the important clues on the genotoxic potentials of these BP-type UV filters.

The Experimental Studies of YangHyulEum Gami-Bang Extracts on the Hair Growth Effect (양혈음가미방(養血飮加味方) 추출물의 발모효과에 대한 실험적 연구)

  • Hong, Jee-Hee;Jung, Hyun-A
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.29 no.3
    • /
    • pp.74-94
    • /
    • 2016
  • Objectives : YangHyulEum Gami-Bang(YHEG) is a hair care extracts which is composed of fourteen plant extracts used in oriental medicine. The purpose of this study is to investigate the effect of YangHyulEum Gami-Bang(YHEG) on the alopecia and hair growth.Methods & Results : The herbal extracts from YangHyulEum Gami-Bang(YHEG) was tested using in vivo and in vitro test models. 1. The YHEG extracts showed effect on the DNA proliferation of the hair dermal papilla cells measured by [3H]thymidine incorporation. 2. YHEG showed promoting on the expression of growth factors such as IGF-1, KGF-1 and inhibiting on the expression of inhibitory hair growth factor such as TGF-β1, BMP-2 estimated by qPCR. 3. The YHEG extracts showed effect on the activation of β-catenin in the dermal papilla cells. 4. YHEG showed inhibitory effects of NO synthesis at 0.2% concentrations. 5. YHEG showed effects in the expression of IL-1β, TNF-α, IL-6, COX-2 and iNOS gene in the LPS stimulated RAW 264.7 cells. 6. The hair growth index of the YHEG extracts ranked at over 2 when compared to control group which was ranked at 0. 7. The hair follicle number, length and size of the experimental group were remarkably higher than the control group in the histological observation.Conclusions : These results suggest that YangHyulEum Gami-Bang(YHEG) has hair growth promoting activity and it can be used as a potent treatment agent for preventing hair loss and stimulating hair growth for treatment of alopecia.

Protective effect of Hizikia fusiforme on radiation-induced damage in splenocytes (방사선을 조사한 마우스에서 비장세포에 대한 톳의 보호 작용)

  • Kim, Areum;Bing, So Jin;Cho, Jinhee;Ahn, Ginnae;Lee, Ji-Hyeok;Jeon, You-Jin;Lee, Byung-Gul;Jee, Youngheun
    • Korean Journal of Veterinary Research
    • /
    • v.55 no.1
    • /
    • pp.21-30
    • /
    • 2015
  • The immune system is specifically sensitive to oxidative stress induced by ionizing radiation because of its rapid proliferative activity. For this reason, an instructive immune system is one of the best ways to minimize side effects, such immunodeficiency, of gamma radiation. Over the past few decades, several natural plants with antioxidant and immunomodulatory properties have been identified as adjuncts for nontoxic and successful radiotherapy. Hizikia fusiforme extract (HFE) containing plentiful dietary fiber and fucoidan is known for its instructive antioxidant capacity, immunomodulation abilities, and immune activation. In this study, we determined whether HFE protects radiosensitive immune cells from gamma radiation-induced damage. C57BL/6 mice were irradiated with gamma-ray. The effect of HFE on the ionizing radiation damage of immune cells was then evaluated with an MTT assay, 3H-thymidine incorporation assay, and PI staining. We found that HFE stimulated the proliferation of gamma-ray irradiated immune cells without cytotoxic effects. We also observed that HFE not only decreased DNA damage but also reduced gamma radiation-induced apoptosis of the immune cells. Our results suggest that HFE can protect immune cells from gamma-ray damage and may serve as an effective, non-toxic radioprotective agent.

Toxicological Effects of B(a)P on Preimplantation Mouse Embryos in Vitro (in vitro에서 B(a)P이 착상전 마우스 배자에 미치는 독성학적 영향에 관한 연구)

  • 박귀례;이유미;김판기;신재호;강태석;김주일;장성재
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.2
    • /
    • pp.126-133
    • /
    • 1998
  • Effects of B(a)P on preimplantation mouse embryos in vitro were studied. Preimplantation mouse embryos were exposed to a concentration of 0.3, 1, 3 and 10 $\mu$M B(a)P for 72 hrs. The toxicological effects of B(a)P were evaluated by morphological observation of embryos up to the blastocyst stage, and by measuring DNA, RNA and protein synthesis by radioactive precursor incorporation. At 1 $\mu$M B(a)P did not affect preimplantation development but interfered with hatching and ICM formation. Suppressing effect of ICM formation was dose dependent. At the eight cell stage, the developmental rate was decreased at above 3 $\mu$M of B(a)P. At the blastocyst stage, attachment and trophoblast outgrowth were diminished at the 10 $\mu$M of B(a)P and ICM formation was decreased at 1 $\mu$M of B(a)P. Inner cell number of blastocyst was decreased dose dependently. So, number of ICM was one of the most sensitive and toxicological end point. The RNA incorporation rate of 0.1 $\mu ^3$H-uridine was dosedependent and the protein incroporation of 0.5 $\mu Ci ^{35}$S-methionine showed a significant decrease after 48 hrs. But the DNA incorporation rate of methyl-$^3$H thymidine was not affected. Our results suggested that B(a)P did not affect the DNA replication but transcription was inhibited by dose dependent manner. There delay of development during the blastocyst stage was mainly due to the inhibition of RNA synthesis followed by protein synthesis.

  • PDF

Dietary Glutamine Supplementation Enhances Weaned Pigs Mitogen-Induced Lymphocyte Proliferation

  • Lee, D.N.;Weng, C.F.;Cheng, Y.H.;Kuo, T.Y.;Wu, J.F.;Yen, H.T
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.8
    • /
    • pp.1182-1187
    • /
    • 2003
  • Two experiments involving 92 crossbred, 21 day old weaned pigs were used to evaluate the effect of glutamine supplement in a dietary or culture medium on lymphocyte proliferation. In Exp. 1, 88 pigs were fed diets supplemented with 0, 0.5, 1.0, or 1.5% glutamine for 28 days. Lymphocytes were prepared from peripheral blood mononuclear cells (PBMC), ileal Peyer's patches (PP), the mesenteric lymph node (MLN), and the spleen in each dietary supplement group on days 7, 14, or 28 postweaning. Lymphocytes were cultured at $37^{\circ}C$ for 72 h in a RPMI-1640 medium with or without mitogen-stimulated, and pulsed with 3Hthymidine for an additional 18 h. The stimulation index of PBMC proliferation in 1.0% dietary glutamine supplement group and both of the MLN and splenocytes proliferation in 1.5% dietary glutamine supplement group was significantly (p<0.05) increased at 14 days postweaning. In Exp. 2, four weaned pigs were fed a basal diet for 14 days. The 3H-thymidine incorporation of PBMC, PP, and MLN cells, incubated with 0.125 to 0.25 mM glutamine in culture medium were markedly enhanced with Con A-stimulated, however, the splenocyte proliferation was not affected in the addition of glutamine medium. These observations suggest that dietary glutamine supplement might enhance the lymphocyte proliferation of weaned pigs.