• Title/Summary/Keyword: thrusters

Search Result 233, Processing Time 0.02 seconds

Development of Robot Platform for Autonomous Underwater Intervention (수중 자율작업용 로봇 플랫폼 개발)

  • Yeu, Taekyeong;Choi, Hyun Taek;Lee, Yoongeon;Chae, Junbo;Lee, Yeongjun;Kim, Seong Soon;Park, Sanghyun;Lee, Tae Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.168-177
    • /
    • 2019
  • KRISO (Korea Research Institute of Ship & Ocean Engineering) started a project to develop the core algorithms for autonomous intervention using an underwater robot in 2017. This paper introduces the development of the robot platform for the core algorithms, which is an ROV (Remotely Operated Vehicle) type with one 7-function manipulator. Before the detailed design of the robot platform, the 7E-MINI arm of the ECA Group was selected as the manipulator. It is an electrical type, with a weight of 51 kg in air (30 kg in water) and a full reach of 1.4 m. To design a platform with a small size and light weight to fit in a water tank, the medium-size manipulator was placed on the center of platform, and the structural analysis of the body frame was conducted by ABAQUS. The robot had an IMU (Inertial Measurement Unit), a DVL (Doppler Velocity Log), and a depth sensor for measuring the underwater position and attitude. To control the robot motion, eight thrusters were installed, four for vertical and the rest for horizontal motion. The operation system was composed of an on-board control station and operation S/W. The former included devices such as a 300 VDC power supplier, Fiber-Optic (F/O) to Ethernet communication converter, and main control PC. The latter was developed using an ROS (Robot Operation System) based on Linux. The basic performance of the manufactured robot platform was verified through a water tank test, where the robot was manually operated using a joystick, and the robot motion and attitude variation that resulted from the manipulator movement were closely observed.

Observation on the Seabed around Simheungteak Seamount near Dokdo and using Mini-ROV (소형 ROV를 활용한 독도 및 심흥택해산 해저면 탐사)

  • MIN, WON-GI;RHO, HYUN SOO;KIM, CHANG HWAN;PARK, CHAN HONG;KIM, DONGSUNG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.1
    • /
    • pp.18-29
    • /
    • 2019
  • ROV surveys were conducted using 500 meter mini class ROV with HD video camera, 2 LED lights, a simple manipulator and 8 thrusters near the Dokdo and Simheungtaek seamount. Total six dives have been conducted using the ROV "V8 SII" from Sweden and ROV's support ship, "KOSAL V" at 4 stations between 45 and 370 meters with diving time ranged from 30 to 120 minutes. Dense communities of sea anemone (Actinostolidae sp.) and ophiuroids (Ophiuridae sp.) on the surface of rocky bottom and snow crab on the soft bottom with muddy-sand were observed at northwestern part of Simheungtaek seamount. We obtained the following results 1) habitats information for snow crab, one of the major fisheries resources, and deep-sea fauna, 2) observation on the specific topography and sediment conditions, 3) observation of the seabed surface covered with the discarded fishing gears. This study represents the first report of in situ visual observation of deep-sea organisms and their habitats near the Dokdo slopes and flat top of the Simheungtaek seamount in the East Sea. These results indicated that immediate oceanographic survey using the mini class ROV is available in the East Sea.

A Study on the Required Horsepower of Tugboats at Jeju Port for Car Ferries - Focusing on Car Ferry H - (카페리여객선 제주항 입출항 시 예선 사용 기준에 관한 연구 - 카페리여객선 H호를 중심으로 -)

  • Byung-Sun Kang;Chang-Hyun Jung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.2
    • /
    • pp.209-216
    • /
    • 2024
  • Four accidents occurred between 2020 and 2022 after car ferries built according to a coastal passenger ship modernization plan collided with other ships or came into contact with the dock when entering Jeju Port. Accidents primarily occurred owing to careless ship handling and drift by wind during ship handled by herself using bow and stern thrusters without tugboats. Accordingly, in this study, we analyzed the collision accident focusing on car ferry H and the critical wind speed at which the ship cannot be controlled using its own power, tugboat operation plan in increasing wind speed were proposed based on the power required for the ship to berth parallel to the pier without a tugboat considering the external force and moment generated while the ship is berthing. A analysis of the critical wind speed of car ferry H by relative wind direction when using tugboats or not according to the loading status and the berthing speed, showed that one tugboat should be used at the stern when the lateral wind speed is over 10 m/s and two tugboats should be used when the lateral wind speed is over 14m/s berthing at Jeju port.