• Title/Summary/Keyword: thrust center

Search Result 196, Processing Time 0.025 seconds

Analysis of Thrust Misalignments and Offsets of Lateral Center of Gravity Effects on Guidance Performance of a Space Launch Vehicle (추력비정렬 및 횡방향 무게중심 오프셋에 의한 우주발사체 유도 성능 영향성 분석)

  • Song, Eun-Jung;Cho, Sangbum;Sun, Byung-Chan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.8
    • /
    • pp.574-581
    • /
    • 2019
  • This paper investigates the effects of thrust misalignments and offsets of the lateral center of gravity of a space launch vehicle on its guidance performance. Sensitivity analysis and Monte Carlo simulations are applied to analyze their effects by computing changes in orbit injection errors when including the error sources. To compensate their effects, the attitude controller including an integrator additionally and the Steering Misalignment Correction (SMC) routine of the Saturn V are considered, and then Monte Carlo simulations are performed to evaluate their performances.

Comparative study on the prediction of speed-power-rpm of the KVLCC2 in regular head waves using model tests

  • Yu, Jin-Won;Lee, Cheol-Min;Seo, Jin-Hyeok;Chun, Ho Hwan;Choi, Jung-Eun;Lee, Inwon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.24-34
    • /
    • 2021
  • This paper predicts the speed-power-rpm relationship in regular head waves using various indirect methods: load variation, direct powering, resistance and thrust identity, torque and revolution, thrust and revolution, and Taylor expansion methods. The subject ship is KVLCC2. The wave conditions are the regular head waves of λ/LPP = 0.6 and 1.0 with three wave steepness ratios at three ship speeds of 13.5, 14.5 and 15.5 knots (design speed). In the case of λ/LPP = 0.6 at design speed, two more wave steepness ratios have been taken into consideration. The indirect methods have been evaluated through comparing the speed-power-rpm relationships with those obtained from the resistance and self-propulsion tests in calm water and in waves. The load variation method has been applied to predict propulsive performances in waves, and to derive overload factors (ITTC, 2018). The overload factors have been applied to obtain propulsive efficiency and propeller revolution. The thrust and revolution method (ITTC, 2014) has been modified.

Development of Side Jet Thruster with Nozzle Closure Separation Device (고기동 추진기관의 노즐개방형 측추력기 개발)

  • Han, Houkseop;Park, Euiyong;Kim, Dongjin;Son, Youngil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.2
    • /
    • pp.80-85
    • /
    • 2014
  • Side jet thruster using nozzle closure separation device provides a solid rocket with a trajectory shift function. Side jet thruster consists of low combustion temperature propellant, neutral type propellant grain and nozzle closure separation device. If a trajectory shift is required, side jet thrust is generated on the rocket by separating some nozzle closures located in the opposite direction to thrust. After completing trajectory shift, the other nozzle closures located in the thrust direction are separated to cease side jet thrust. The operation process is verified through ground static test. The result in this study can be applied to changing rocket trajectory by controlling side jet thrust through nozzle closure separation.

On the Bearing-to-Bearing Variability in Experimentally Identified Structural Stiffnesses and Loss Factors of Bump-Type Foil Thrust Bearings under Static Loads (범프 타입 포일 스러스트 베어링의 정하중 구조 강성 및 손실 계수 차이에 관한 실험적 연구)

  • Lee, Sungjin;Ryu, Keun;Jeong, Jinhee;Ryu, Solji
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.332-341
    • /
    • 2020
  • High-speed turbomachinery implements gas foil bearings (GFBs) due to their distinctive advantages, such as high efficiency, lesser part count, and lower weight. This paper provides the test results of the static structural stiffnesses and loss factors of bump-type foil thrust bearings with increasing preload and bearing deflection. The focus of the current work is to experimentally quantify variability in structural stiffnesses and loss factors among the four test thrust bearings with identical design values and material of the bump and top foil geometries using the same (open-source) fabrication method. A simple test setup, using a rigidly mounted non-rotating shaft and thrust disk, measures the bearing bump deflections with increasing static loads on the test bearing. The inner and outer diameters of the test bearings are 41 mm and 81 mm, respectively. The loss factor, best-representing energy dissipation in the test bearings, is estimated from the area inside the local hysteresis loop of the load versus the bearing deflection curve. The measurements show that structural stiffnesses and loss factors of the test bearings significantly rely on applied preloads and bearing deflections. Local structural stiffnesses of the test bearings increase with applied preloads but decrease with bearing deflections. Changes of loss factors are less sensitive to applied preloads and bearing deflections compared to those of structural stiffnesses. Up to 35% variability in static load structural stiffnesses is found between bearings, while up to 30% variability in loss factors is found between bearings.

Internal Ballistics Analysis and Experimental Validation of Thrust Modulation for Hybrid Rocket Using Self-Pressurizing Nitrous Oxide (자발가압 아산화질소를 이용한 하이브리드 로켓의 추력제어 내탄도 해석 및 실험적 검증)

  • Han, Seongjoo;Moon, Heejang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.3
    • /
    • pp.47-58
    • /
    • 2020
  • In this study, a thrust modulation through oxidizer mass flow rate control and internal ballistic analysis based on Whitmore and Chandlers' models was conducted on a blow-down hybrid rocket using nitrous oxide. The tank pressure prediction considering mass flow rate control of the self-pressuring oxidizer was conducted, and the results showed good agreements with experimental results. In order to verify the internal ballistic analysis, a ground combustion test using a 500 N class hybrid rocket was conducted, and it was confirmed that the experimental results and the analytical results were quite consistent in the chamber pressure and thrust, thereby, a modeling technique capable of predicting the thrust modulation performance is proposed.

Design of a Thrust Stand Using Flexure (플렉셔를 적용한 추력 시험대 설계)

  • Jin, Juneyub;Park, Youngseok;Lee, Changwook;Jeong, Sangseop;Lee, Juhyung;Baek, Cheulwoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.3
    • /
    • pp.205-212
    • /
    • 2021
  • In this study, two types of thrust stand modeling were proposed for the design of a thrust stand using flexure. Type A model generate combined load for tangential (thrust) and axial compressive load (self weight). And type B generate combined load for tangential and axial tensile load. The research was done by comparing the influence of the load between the models through a 1D calculation and computational analysis. The 1D calculated value and the computational analysis value were compared for a total of 10 sections and the results were confirmed to be very similar. In order to prove the validity of the analysis results, the equivalent stress was confirmed from the computational analysis of the flexure, and the production of the Type B model was selected from the evaluation of the yield condition (Von-Mises Yield Criterion).

A Study on Development of the Dual-thrust Flight Motor for Enhancing the Hit Probability (명중률 향상을 위한 이중추력형 비행모터 개발에 대한 연구)

  • Kim, Hanjun;Kim, Eunmi;Kim, Namsik;Lee, Wonbok;Yang, Youngjun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.4
    • /
    • pp.74-80
    • /
    • 2014
  • This paper describes the development of the dual-thrust flight motor for enhancing the hit probability of unguided rockets. We designed dual-thrust flight motor by shape modification of the double base propellant with high burning rate, and confirmed the dual-thrust performance by static firing tests. The test results showed the thrust ratio of about 1:7.6 between sustaining phase and boosting phase, and had a quietly normal dual-thrust characteristics. And the results showed that there was not the fire extinction phenomenon of propellant due to the pressure drop.

Aft-Igniter Performance related to the Formulation and the Shape of Ignition Charge (점화제 조성과 형상에 따른 후방 점화기 성능)

  • Jung, Jin-Suk;Ahn, Gil-Hwan;Jang, Seung-Gyo;Ryu, Byung-Tae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.387-393
    • /
    • 2014
  • The combustion pressure and thrust of aft-igniter were measured to investigate the characteristics of ignition charge. Granule and pellet shape ignition charge of $BKNO_3$ and MTV(Magnesium-Teflon-Viton) were used for igniters. Ignitions with granule charges show abrupt increases of combustion pressure and thrust compared to those of pellet charge. $BKNO_3$ igniter shows higher combustion pressure than MTV igniter due to higher combstion rate. Mg particle size affects the combustion pressure of MTV igniter.

Design of Spindle Motor for Small HDDs (소형 HDD용 스핀들 모터의 전자계 설계 및 특성 연구)

  • Seo, Jung-Moo;Jung, In-Soung;Sung, Ha-Gyeong
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.995-996
    • /
    • 2007
  • This study is for a design of a spindle motor for 1.8 inch hard disk drives(HDDs). Equivalent magnetic circuit model is applied for a basic design of the motor, a specific configuration design and magnetic distribution characteristics are confirmed using finite element analysis. Besides, thrust forces generated between rotor and stator core and thrust pad are calculated for pressure analysis of fluid dynamic bearings.

  • PDF

Evaluation of Yacht Sails Performance by CFD and Experiments (요트 세일의 성능에 관한 수치해석 및 실험)

  • Yoo Jae-Hoon;Ahn Hae-Seong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.125-133
    • /
    • 2006
  • It is important to understand flow characteristics and performances of sails for both sailors and designers who want to have efficient thrust of yacht In this Paper the viscous flows around sail-like rigid wings, which are similar to main and jib sails of a 30 feet sloop, are calculated using a CFD tool. Lift, drag and thrust forces are estimated for various conditions of gap distance between the two sails and the center of effort of the sail system is obtained. Wind tunnel experiments are also carried out to measure aerodynamic forces acting on the sails system and to validate the computation. It is found that the combination of two sails produces the lift force larger than the sum of that produced separately by each sail and the gap distance between the two sails is an important factor to determine total lift and thrust.